THERMOSPHERICA: A SECOND TEMPERATURE, DENSITY, AND COMPOSITION: NEW MODES

ist in the second

Sminsomery/snoom/stelenging wind Street Stelength

(NASA-CR-153049) THERMOSPHERIC TEMPERATURE, DENSITY, AND COMPOSITION: NEW MODELS (Smithsonian Astrophysical Observatory)
112 p HC A06/MF A01 CSCL 04A

N//-23648

Unclas 30129

G3/46

Research in Space Science SAO Special Report No. 375

THERMOSPHERIC TEMPERATURE, DENSITY, AND COMPOSITION: NEW MODELS

L. G. Jacchia

March 15, 1977

Smithsonian Institution Astrophysical Observatory Cambridge, Massachusetts 02138

TABLE OF CONTENTS

		Page
ABSTRAC	T	vii
INTRODU	CTION	1
PART I:	THE STATIC MODELS	5
1	TEMPERATURE PROFILES	7
2	COMPOSITION	9
PART II:	THERMOSPHERIC VARIATIONS	15
1	VARIATIONS IN THE THERMOSPHERE AND EXOSPHERE	17
2	THE VARIATION WITH SOLAR ACTIVITY	19
3	THE DIURNAL VARIATION	27
4	VARIATIONS WITH GEOMAGNETIC ACTIVITY	37
	4.1 The Thermal Component	3 8
	4.2 Effect of a Change in the Height of the Homopause	39
•	4.3 The Equatorial Wave	40
	4.4 The Global Temperature Distribution	40
5	SEASONAL-LATITUDINAL VARIATIONS	43
	5.1 The Thermospheric Seasonal-Latitudinal Variation	43
	5.2 The Mesospheric Seasonal-Latitudinal Variation	44
6	THE SEMIANNUAL VARIATION	47
7	RAPID DENSITY FLUCTUATIONS	51
8	SUMMARY OF FORMULAE USED IN THE TEXT	53
9	NUMERICAL EXAMPLE	57
REFEREN	NCES	61

ILLUSTRATIONS

		Page
1	Four temperature profiles from the present models	8
2	Number densities of individual atmospheric constituents as a function of height for three representative exospheric temperatures	13
3	Total density as a function of exospheric temperature for various heights	14
4	Mean global exospheric temperature $T_{1/2}$ for quiet geomagnetic conditions as a function of the smoothed 10.7-cm solar flux	21
5	Comparison between the temperatures of the present models with those of the models of Thuillier et al. and Hedin et al	25
6	The diurnal variation of the exospheric temperature at the equator at the time of equinoxes	30
7	Global distribution of the exospheric temperature for quiet geomagnetic conditions	33
8	Local solar time of the maximum density of four atmospheric constituents as a function of height	34
9	The density variation of four atmospheric constituents as a function of the invariant latitude	41
10	Exospheric temperature profiles along the complete meridional circle.	42
11	The semiannual density variation at 200 and 500 km	50
	TABLES	
1	Residuals from the models of densities from satellite drag	2
2	Dependence of the maximum temperature gradient on the exospheric temperature	8
3	Assumed sea-level composition	9
4	The smoothed 10.7-cm solar flux \overline{F} , computed from equations (21) and (22)	22
5	Comparison of exospheric temperatures as a function of the smoothed 10.7-cm solar flux \overline{F}	24
6	Global distribution of exospheric temperatures at the time of the equinoxes and of the June solstice	31
7	Parameters of the seasonal-latitudinal variation	44

TABLES (cont.)

		Fage
8	The "mesospheric" seasonal-latitudinal density variation according to equation (37)	46
9	Tables for the computation of the semiannual density variation using equation (40)	49
10	Basic static models	65
11	Summary of log densities from Table 10	103

ABSTRACT

These models represent a thorough revision of those published by the author in 1971, which were incorporated in the COSPAR International Reference Atmosphere 1972. The models essentially consist of two parts: 1) the basic static models, which give temperature and density profiles for the relevant atmospheric constituents for any specified exospheric temperature, and 2) a set of formulae to compute the exospheric temperature and the expected deviations from the static models as a result of all the recognized types of thermospheric variation. For the basic static models, tables are given for heights from 90 to 2500 km and for exospheric temperatures from 500 to 2600 K. In the formulae for the variations, an attempt has been made to represent the changes in composition observed by mass spectrometers on the OGO 6 and ESRO 4 satellites.

DING PAGE BLANK NOT FL

	 ,		t ·	3	•	
.						
		`				
	•					
	,		·			
	•			en sili servesia a	TRUMP OF THE SECTION OF A VIOLATION OF	

THERMOSPHERIC TEMPERATURE, DENSITY, AND COMPOSITION: NEW MODELS

L. G. Jacchia

INTRODUCTION

The models presented herein are a thoroughly revised version of our 1971 models (Jacchia, 1971a), which in turn were a revision of earlier, similarly patterned models (Jacchia, 1965, 1970). Following a widespread custom, we shall refer to these models as J65, J70, and J71. The models essentially consist of two parts: 1) the basic static models, which give temperature and density profiles for the relevant atmospheric constituents for any specified exospheric temperature, and 2) a set of formulae to compute the exospheric temperature and the expected deviations from the static models as a result of all the recognized types of thermospheric variation.

In revising the basic models, we strove to reproduce the results from the OGO 6 satellite concerning the relative concentrations of $\rm N_2$ and O at 450 km (Taeusch and Carignan, 1972; Hedin, Mayr, Reber, Spencer, and Carignan, 1974), while keeping the total-density profiles anchored to satellite drag. This was also the aim of the Committee for the Extension of the U.S. Standard Atmosphere in constructing the higher altitude end of the U.S. Standard Atmosphere, 1976 (COESA, 1976), which consists of temperature and density profiles for a single exospheric temperature, 1000 K. As a consequence of this common aim and of mutual consultations, our profiles for 1000 K are very similar to the U.S. Standard profiles. In the lower thermosphere, where the U.S. Standard Atmosphere (USSA) relies heavily on the Aladdin experiments, we have tried to keep as close as possible to its O and $\rm O_2$ profiles. Our helium densities at 1000 km are about 30% smaller than those of the USSA. To obtain the higher

^{*}This work was supported in part by Grant NGR 09-015-002 from the National Aeronautics and Space Administration and Grants SRF 450123 and SRF 460117 from the Smithsonian Research Foundation.

helium densities, which were thought to be necessary to fit some results from satellite drag, the USSA introduced an <u>ad hoc</u> vertical flux for helium. We have found this flux to be entirely unnecessary to fit our satellite-drag results at 1000 km. The difference in the interpretation of the drag lies in the theory used to compute the drag coefficient in a helium atmosphere. We have followed the formulation given by Cook (1965), according to which the drag coefficient becomes quite high, exceeding even 3.0, when a satellite moves in an atmosphere in which helium is the main constituent.

The densities of earlier models relied almost entirely on satellite drag, for which the coefficient 2.2 had been adopted in the 200- to 400-km region, in accordance with an unwritten agreement among investigators. Table 1 gives mean residuals from the present models of densities computed from the drag of 10 satellites using a value of 2.20 for the drag coefficient in the region where it is nearly independent of height (around 200 to 400 km); \overline{z} is the mean "effective height" – this being the average of the actual height around the satellite's orbit weighted by the local atmospheric drag. The residual observed minus computed (model) (O - C) is given in units of $\log_{10} \rho$; n is the number of density determinations used in the comparison.

Table 1. Residuals from the models of densities from satellite drag.

Satellite	₹ (km)	O - C (log ρ)	n	Interval
1962 βτ2	26 8	+0.001	1973	1963.0-1967.4
1966 44A	303	-0.020	5094	1966.4-1975.0
1958 Alpha	368	+0.005	5456	1958.1-1970.2
1966 70A	398	-0.001	2601	1969.0-1975.0
1960 ξ1	455	+0.013	5279	1960.9-1975.0
1964 76A	610	-0.042	4126	1964.9-1968.6
1959 al	614	+0.001	2589	1959.2-1975.0
1963 53A	763	-0.011	6150	1964.0-1968.4
1968 66A	842	+0.001	4172	1968.6-1975.0
1964 4A	999	[+0.036]*	3371	1964.1-1969.4
			Total ·	Extremes
			40811	1958.1-1975.0

^{*}Uncertain, because the near-circular orbit of the satellite caused the "observed" densities to be closer to the mean global densities than to the densities given by the model for the effective height at the geographic position of perigee.

The description of the models is given in two parts. In Part I, we outline the construction of the static models. Part II deals with the several types of thermospheric variation and with the empirical equations that have been devised to represent them using the static models as a reference frame. Auxiliary tables to illustrate and facilitate the computation of some of the variations are interspersed in the text. A summary of all the equations and a numerical example are to be found at the end of Part II. A detailed tabulation of the basic static models is given in Table 10, following the references: number densities of six atmospheric constituents are given in the range from 90 to 2500 km for 19 temperature profiles ending in exospheric temperatures from 500 to 2600 K; also tabulated are the total number density, the mean molecular mass, and the total density and pressure. The total densities are repeated in a compact summary form (Table 11) following the tables of the basic static models.

,

PART I

THE STATIC MODELS

EDING PAGE BLANK NOT FILME

. /

1. TEMPERATURE PROFILES

All temperature profiles start from a constant value $T_0 = 188$ K at the height $z_0 = 90$ km with a gradient $G_0 = (dT/dz)_{z=z_0} = 0$, rise to an inflection point at a fixed height $z_x = 125$ km, and become asymptotic to a temperature T_∞ (often referred to as the 'exospheric' temperature). Both the temperature T_x and the temperature gradient $T_x = (dT/dz)_{z=z_x}$ at the inflection point are functions of T_∞ , defined as follows:

$$T_x - T_0 = 110.5 \sinh^{-1} 0.0045 (T_{\infty} - T_0)$$
 , (1)

$$G_{x} = 1.9 \frac{T_{x} - T_{0}}{z_{x} - z_{0}}$$
, (z in km),

$$(T_0 = 188 \text{ K}, z_0 = 90 \text{ km}, \text{ and } z_x = 125 \text{ km})$$

The temperature profiles are given by the following:

For $z < z_x$,

$$T = T_{x} + \frac{T_{x} - T_{0}}{\pi/2} \tan^{-1} \left\{ \frac{G_{x}}{(T_{x} - T_{0})/(\pi/2)} (z - z_{x}) \left[1 + 1.7 \left(\frac{z - z_{x}}{z - z_{0}} \right)^{2} \right] \right\}, \quad (3)$$

For $z > z_x$,

$$T = T_{x} + \frac{T_{\infty} - T_{x}}{\pi/2} \tan^{-1} \left\{ \frac{G_{x}}{(T_{\infty} - T_{x})/(\pi/2)} (z - z_{x}) \left[1 + 5.5 \times 10^{-5} (z - z_{x})^{2} \right] \right\},$$
(z in km) . (4)

PRICEDING PAGE BLANK NOT FILMED.

Table 2 shows the dependence of the maximum temperature gradient G_X on the exospheric temperature T_∞ . The family of temperature profiles originated by equations (1) to (4) is graphically illustrated in Figure 1.

Table 2. Dependence of the maximum temperature gradient on the exospheric temperature.

T _∞ (°K)	G _x (deg km ⁻¹)	T (°K)	G _x (deg km ⁻¹)
500	6.84	1400	14.38
600	8.26	1600	15.29
800	10.42	1800	16.07
1000	12.04	2000	16.77
1200	13.32	2200	17.39

Figure 1. Four temperature profiles from the present models.

2. COMPOSITION

We have assumed that the atmosphere is composed only of nitrogen, oxygen, argon, helium, and hydrogen, in a condition of mixing up to 100 km and in diffusion above this height. We have adopted the sea-level composition of the <u>U.S. Standard Atmosphere</u> 1962 (COESA, 1962) such as would obtain after elimination of the minor constituents and of hydrogen (which is introduced in our models at a height of 150 km). Thus, the assumed sea-level composition is as shown in Table 3. The resulting sea-level mean molecular mass is $\overline{M}_0 = 28.960$.

Table 3. Assumed sea-level composition.

Constituent	Fraction by volume $q_0(i)$	Molecular weight M _i
Nitrogen (N ₂)	0.78110	28.0134
Oxygen (O ₂)	0.20955	31.9988
Argon (Ar)	0.009343	39.948
Helium (He)	0.000005242	4.0026
Sum	1.00000	

In our 1971 models, we had assumed that at heights below 100 km, any change in the mean molecular mass \overline{M} was caused only by oxygen dissociation. The ratio $n(O)/n(O_2)$ was thus uniquely determined by \overline{M} , for which an empirical profile was given for heights between 90 and 100 km. Since above 100 km composition was rigidly determined by molecular diffusion, there was no provision to account for oxygen dissociation or for any departure from diffusion equilibrium. In the present models, we still use an empirical profile of a mean molecular mass \overline{M}' from 90 to 100 km, but we have added independent corrections to the values of n(O) and $n(O_2)$ determined from this profile; these corrections extend right across the homopause. The final mean molecular mass \overline{M} is computed in the usual manner after the corrections to n(O) and $n(O_2)$ have been applied.

The \overline{M}' profile is defined by

$$\overline{M}'(z) = \sum_{n=0}^{5} c_n(z - 90)^n$$
 , (90 < z < 100 ; z in km) . (5)

The coefficients c_n are given below:

$$\begin{aligned} \mathbf{c}_0 &= 28.89122 \quad , \\ \mathbf{c}_1 &= -2.83071 \times 10^{-2} \quad , \\ \mathbf{c}_2 &= -6.59924 \times 10^{-3} \quad , \\ \mathbf{c}_3 &= -3.39574 \times 10^{-4} \quad , \\ \mathbf{c}_4 &= +6.19256 \times 10^{-5} \quad , \\ \mathbf{c}_5 &= -1.84796 \times 10^{-6} \quad . \end{aligned}$$

First, a density profile ρ' is computed from \overline{M}' by integrating the barometric equation

$$\frac{d\rho'}{\rho'} = \frac{T}{M} d\left(\frac{\overline{M}'}{T}\right) - \frac{\overline{M}'g}{R^*T} dz , \qquad (6)$$

in which the temperature profiles of equation (3) are used with a fixed boundary value $\rho'_0 = 3.43 \times 10^{-6} \text{ kg m}^{-3}$ at z = 90 km. The acceleration due to gravity, g, is defined by

$$g = 9.80665 \left(1 + \frac{z}{R_e}\right)^2 \text{ m sec}^{-2}$$
, $R_e = 6.356766 \times 10^6 \text{ m}$. (7)

This equation (Harrison, 1951; Minzner and Ripley, 1956) is an excellent approximation to the mean value of g (centrifugal acceleration included) at the latitude of $45^{\circ}32'40''$. The universal gas constant $R^* = 8.31432 \times 10^3$ kg m (kg-mol)⁻¹ K⁻¹.

From ρ' we derive a number density N' by

$$N' = \frac{A\rho'}{\overline{M}'} \quad , \tag{8}$$

where A is Avogadro's number, 6.02217×10^{26} (mks). For N₂, Ar, and He, the number densities n(i) are computed from

$$n(i) = q_0(i) \frac{\overline{M'}}{\overline{M'}_0} N' , \qquad (9)$$

while for O and O2, we have

$$n'(O) = 2N'\left(1 - \frac{\overline{M'}}{\overline{M'}_0}\right) , \qquad (10)$$

$$\mathbf{n'}(O_2) = \mathbf{N'} \left\{ \frac{\overline{\mathbf{M'}}}{\overline{\mathbf{M'}}_0} \left[1 + \mathbf{q}_0(O_2) \right] - 1 \right\} . \tag{11}$$

To n'(O) and $n'(O_2)$ we apply empirical corrections to account for atomic oxygen production above the homopause, so that the final number densities of O and O_2 become

$$\log n(O) = \log n'(O) + \Delta \log n'(O) , \qquad (12)$$

$$\log n(O_2) = \log n'(O_2) + \Delta \log n'(O_2)$$
 (13)

The corrections are

$$\Delta \log n'(O) = -0.24 \exp \left[-0.009(z - 97.7)^2\right]$$
 , (14)

$$\Delta \log n'(O_2) = -0.07 \{1 + \tanh [0.18(z - 111)]\}$$
, (z in km). (15)

The final values of N and ρ are computed from Σ n(i) and Σ n(i) M_i by using the original values of n(i) for N₂, Ar, and He as computed from equation (9) and the corrected values of n(O) and n(O₂) as computed from equations (10) to (15).

The number densities n(i) at 100 km computed in the manner just described are taken as boundary values in the integration of the diffusion equation, which is used to compute n(i) for heights above 100 km. We can write the equation in the form

$$\frac{dn(i)}{n(i)} + \frac{dT}{T} (1 + a_i) + \frac{dz}{H_i} + \frac{\Phi_i}{D} \frac{dz}{n(i)} = 0 , \qquad (z > 100 \text{ km}) . \qquad (16)$$

Here, α_i and Φ_i are, respectively, the thermal diffusion coefficient and the vertical flux proper to the species i, D is the mutual diffusion coefficient, and $H_i = R^*T/M_i g$, the scale height of species i. For helium and hydrogen, we assumed $\alpha_i = -0.38$ and -0.25, respectively; for all other constituents, $\alpha_i = 0$. We took Φ_i to be zero for all constituents except hydrogen, for which we used a vertical flux proportional to the number density at a height of 500 km, as given by

$$\log_{10} n_{500}(H) = 5.94 + 28.9 T_{\infty}^{-1/4}$$
, (mks),

$$\log_{10} \Phi(H) = 6.90 + 28.9 \text{ T}_{\infty}^{-1/4}$$
 , (mks) , (18)

and a diffusion coefficient D taken from the U.S. Standard Atmosphere, 1976:

$$D = 2.0 \times 10^{20} \frac{\sqrt{T}}{N} , \qquad (19)$$

where N is the total number density. The hydrogen densities are based mainly on Brinton, Mayr, and Potter (1975), while the absolute term in the equation for $\Phi(H)$ was chosen such as to make the flux for $T_{\infty} = 1000$ K equal to that used in the U.S. Standard Atmosphere, 1976.

The variations of the number densities of the various atmospheric species and of the total density with temperature and height are illustrated in Figures 2 and 3.

Atomic nitrogen. Mauersberger, Engebretson, Kayser, and Potter (1976) have succeeded in measuring atomic nitrogen with the open-source neutral mass spectrometer on the Atmosphere Explorer C satellite. Introducing their data into our models,

we find that for an exospheric temperature of 700 K, n(N)/n(O) increases from 0.012 at 500 km to 0.048 at 1000 km; for 1500 K, the ratio is only 0.0027 at 500 km and increases to 0.0049 at 1000 km. Although not insignificant, N never becomes important enough to justify its introduction into our models at the present state of knowledge about its behavior.

Figure 2. Number densities of individual atmospheric constituents as a function of height for three representative exospheric temperatures. The mean molecular mass as a function of height is shown for various exospheric temperatures in the lower right diagram.

Figure 3. Total density as a function of exospheric temperature for various heights.

PART II

THERMOSPHERIC VARIATIONS

1. VARIATIONS IN THE THERMOSPHERE AND EXOSPHERE

Several types of variation are recognized in the atmospheric regions covered by the present models. They can be classified as follows:

- 1. Variation with the solar cycle.
- 2. Variation with the daily change in activity on the visible disk of the sun.
- 3. The daily, or diurnal, variation.
- 4. Variation with geomagnetic activity.
- 5. Seasonal-latitudinal variations.
- 6. The semiannual variation.
- 7. Rapid density fluctuations probably connected with gravity waves.

All these variations, with the exception of the last, are subject to some amount of regularity and can be predicted with varying degrees of accuracy on the basis of ground-based observational data. It should be obvious that static models cannot represent all types of variation equally well. They should be quite adequate when the characteristic time of the variation is much longer than the time involved in the conduction, convection, and diffusion processes; when, on the other hand, it is comparable or shorter—as in the daily variation and the geomagnetic effect—we must expect poorer results. By this, we mean that if we try to represent the observed density variations, we may have to introduce temperature variations that are not entirely correct, or vice versa. Since, by far, the largest observational material consists of density measurements, it is the density variation that we have tried to keep correct. We have no direct evidence so far that the resulting temperature variation might be grossly in error; some error, however, must be expected in the daily variation and in the geomagnetic effect.

In the analytic formulation of the different types of variation, we have tried to avoid a proliferation of symbols or the use of numerical subscripts for the many constants. Therefore, we have made no effort to keep the symbolism consistent throughout: the same letters have often been used for exponents or coefficients in equations pertaining to separate types of variation. We have assumed that no confusion would result if it is understood that, apart from such universally accepted symbols as T, ρ , ϕ , and z for temperature, density, latitude, and height, each type of variation has its own separate symbolism.

17

2. THE VARIATION WITH SOLAR ACTIVITY

The ultraviolet solar radiation that heats the earth's upper atmosphere actually consists of two components, one related to active regions on the solar disk and the other to the disk itself. The active-region component comes from areas of higher temperature and consists mainly of the spectral lines of highly ionized atoms, such as Fe XIV-XVI, Si IX-X, and Mg X; radiation from the clear disk comes from much less ionized atoms, such as He I-II and O IV, and the helium continuum. The active-region component varies rapidly from day to day in correspondence with the appearance and disappearance of active areas caused by the rotation of the sun and by spot formation; the disk component presumably varies more slowly in the course of the 11-year solar cycle. Since the radiation in the two components is different, we must expect the atmosphere to react in a different manner to each of them — and this is actually observed.

The 10.7-cm solar flux F is generally used as a readily available index of solar EUV radiation. It also consists of a disk component and an active-area component, which can be separated statistically by relating the observed values of the flux integrated over the whole solar disk to the corresponding sunspot numbers (Hachenberg, 1965) or, better, to sunspot areas (Jacchia and Slowey, 1973). When the 10.7-cm flux increases, there is an increase in the temperature of the thermosphere and exosphere; for a given increase in the disk component, however, the temperature increases much more than for the same increase in the active-area component. Separate values of the two components of the solar flux are not readily available; fortunately, we have found (Jacchia and Slowey, 1973) that the disk component is, for all practical purposes, linearly related to \overline{F} , the flux averaged, or smoothed, over a few solar rotations. We can, therefore, replace the relation between the temperature and the disk component with an equivalent relation between the temperature and the decimetric solar flux.

From an analysis of about 40,000 densities derived from satellite drag in the interval 1958 to 1975, we find that $T_{1/2}$, the arithmetic mean of the global extrema

of the diurnal variation in the exospheric temperature under quiet geomagnetic conditions, $K_p = 0$, is related to F and \overline{F} by the equation

$$T_{1/2} = 5.48 \overline{F}^{0.8} + 101.8 F^{0.4}$$
 (20)

F and \overline{F} are in the customary units of 10^4 Jansky (10^{-22} W m⁻² Hz⁻¹ bandwidth). For a better definition of $T_{1/2}$, see Section 3, including the warning note. In our analysis, we took for \overline{F} the average of F over six solar rotations. A smoother version of \overline{F} , which we consider superior and definitely recommend, is obtained by taking a weighted mean of F, in which the weight is a gaussian function of time:

$$\overline{\mathbf{F}} = \frac{\sum \mathbf{W} \mathbf{F}}{\sum \mathbf{W}} \quad , \tag{21}$$

with

$$w = \exp\left[-\left(\frac{t - t_0}{\tau}\right)^2\right] . \tag{22}$$

Here, t is time and t_0 the instant for which we want to compute \overline{F} . A recommended value of τ is three solar rotations, or 71 days. The variation of $T_{1/2}$ as a function of \overline{F} is illustrated in Figure 4, where the extrema of the diurnal variation are also shown. In Table 4, values of \overline{F} computed with equations (21) and (22) are given at 10-day intervals from 1958 to 1976.

Table 5 compares the temperatures of the present models (J) with those of the models of Thuillier, Falin, and Wachtel (1976) (T) and Hedin <u>et al.</u> (1974) (H) for the same values of \overline{F} when $F = \overline{F}$ and $K_p = 0$. It should be remembered that the temperatures of Thuillier <u>et al.</u> are Doppler temperatures, those of Hedin <u>et al.</u> are N_2 temperatures, and those of the present model are mainly atomic oxygen temperatures.

Figure 4. Mean global exospheric temperature $T_{1/2}$ for quiet geomagnetic conditions $(K_p=0)$ as a function of the smoothed 10.7-cm solar flux $[F=\overline{F}$ in equation (20)]. Also given are the corresponding extrema of the global diurnal temperature variation at the time of solstices and equinoxes.

REPRODUCIBILITY OF THE OSCIGINAL PAGE IS POOR

	Table	4. T	he smo	othed 10.	7-cm	solar flux	F, c	omputed	from e	equations	(21) and	1 (22).	
M.J.D.	FLUX	M.J.D.	FLUX	M.J.D.	FLUX	M.J.D.	FLUX	M.J.D.	FLUX	M.J.D.	FLUX	M.J.D.	FLUX
24276	22/ /5	24020	197.59	37330	114.87	37830	92.50	38330	80.53	38830	74.12	39330	106.50
	234.45	36830 36840		37340	112.34	37840	91.33	38340			74,30	39340	107.55
36340	233.80			37350	110.40	37850	90.18	38350			74.62	39350	108.33
36350	233.09	36850			108.64	37860	89.04	38360			75.01	39360	109.03
36360	232,56	36860		37370	107.69	37870	88.10	38370			75.42	39370	109.85
36370	232.45	36870	184,23		_		_		_		-	20300	110,45
36380	232.61	36880	182,04	37380	106.80	37880	87.20	38380			75.87	39380	111.18
36390	232.64	36890	180,30	37390	106.33	37890	86.55	38390			76.33	39390	
36400	233.04		178.94	37400	106.33	37900	86.06	38400			76.75	39400	112.02
36410	233.76	36910	178.24		106.55	37910	85.60	38410			77.11	39410	112.98
36420	233.89	36920	176,95	37420	106.90	37920	85.22	38420	74.49	. 38920	77.40	39420	114.21
24420	22/ 10	36930	175.97	37430	107.65	37930	84.96	38430	74.22	. 38930	77.62	39430	115,89
36430	234.18	36940		37440	108.32	37940	84.45	38440			77.73	39440	117.36
36440	234.12	36950			109.16	37950	84.02				77.74	39450	119.40
36450	233.59				110.03	37960	83.57	38460			77.73	39460	121.72
36460	232.57	36960			110.66	37970	82.81	38470			77.67	39470	124.19
36470	231.41	36970	170,44	3(410	1.0,00	31710	02.00				·		
36480	230,28	36980	168.96	37480	111.31	37980	82.21	38480	73,33	38980	77.57	39480	126.93
36490	229.06	36990		37490	111.63	37990	81.43				77.51	39490	129.85
36500	227.95	37000			111,57	38000	80.65		72,87	39000	77.48	39500	132,31
36510	226.99	37010			111.52	38010	79.97				77.43	39510	134.74
36520		37020			110.67	38020	79.38				77.33	39520	137,02
38320	226.39	3,020	*****	3,30						•			120 76
36530	226.28	37030	164,34	37530	109.66	38030	78.80				77.30	39530	138.74
36540	226.27	37040		37540	108,52	38040	78.44				77.23	39540	140,13
36550	226.22	37050		37550	106.75	38050	78.17	38550		39050	77.20	39550	141.07
36560	226.53	37060		37560	105,00	38060	78.07	38560			77.28	39560	141.48
36570	226.67	37070		37570	103.03	38070	78.10	38570	71.00	39070	77.33	39570	141.57
					.00 -/	2-2-0	7- 27	38580	70.87	39080	77.50	39580	141.43
36580	226.45	37080		37580	100.96	38080	78.37				77.81	39590	140.90
36590	226,23	37090		37590	99.01	38090	78.64				78.27	39600	140,47
36600	225.91		167.43	37600	97.24	38100	79.11				78.94	39610	139.91
36610	224,72	37110		37610	95.49	38110	79.72				79.69	39620	139,42
36620	223.90	37120	167.88	37620	94.16	38120	80.42	38620	70.82				
36630	222.92	37130	167.62	37630	93,16	38130	81.07	38630	70.92	39130	80,67	39630	139,28
36640	222.07	37140		37640	92,41	38140	81.71				81.65	39640	139,20
36650	221.29	37150		37650	92.10	38150	82.33		71.19	39150	82.87	39650	139.53
36660	220.64	37160		37660	92,01	38160	82.82		71.41	39160	84.23	39660	139.97
36670	220.00	37170		37670	92.27	38170	83.18		71.58	39170	85.53	39670	140.37
36010	220,00	3,4,										30400	141.46
36680	219.43	3718	0 162.06	37680	92.81	38180	83.38				87.13	39680	
36690	219.15	3719		37690	93,38	38190	83.46	38690			88,52	39690	
36700	218.79		0 157.14	37700	94.12	38200	83.42	38700	72.34			39700	
36710	218.48	3721		37710	94,90	38210	83.29		72.60		91.66	39710	
36720	218.25		0 151.29	37720	95.52	38220	83.12	38720	72.8	5 39220	93.11	39720	142.87
										. 20230	94.64	39730	143.06
36730	218.01	3723		37730	96.14	38230	82.9			8 39230 D 39240		39740	
36740	217.66	3724			96.67		82.84					39750	
36750	217.39	3725		37750	96.94		82.70					39760	
36760	216,52	3726		37760	97.09	38260	82.6						
36770	215.11	3727	0 134.45	37770	97.07	38270	82.5	38770	73,6	7 39270	77.77	39110	24464
	212 (6	2772	0 130,95	37780	96.74	38280	82.4	2 38786	73.7	0 39280	101.19	39780	144.46
36780		3728					82.2					39790	
36790		3729					81.9					39800	
36800		3730					81.6					39810	149.73
36810			0 120.66				81.1					39820	152.16
36820	201.39	3/32	0 117.56	31820	33,03	(• •				

Table 4. (Cont.)

M.J.D.	FLUX	M.J.D.	FLUX	M.J.D.	FLUX	M.J.D.	FLUX	M.J.D.	FLUX	M.J.D.	FLUX	M.J.D.	FLUX
39830	154.45	40280	155.07	40730	161.33	41180	112.18	41630	108.99	42080	81.56	42530	72.84
3984C	156.85	40290	156.23	40740	160.13	41190	111.92	41640	107.42	42090	81.80	42540	73.31
39850	158.74	40300	157,16	40750	159.08	41200	111.48	41650	105.92	42100	82.19	42550	73.80
39860	159.91	40310	158.01	40760	157.91	41210	111.34	41660	104.66	42110	82.68	42560	74.56
39870	160.59	40320	158.20	40770	156.39	41220	111.17	41670	103.40	42120	83.45	42570	75.48
			-				,	-1010	103,40	42120	03,43	42310	13,40
39880	160.58	40330	158,19	40780	154.82	41230	111.08	41680	102.37	42130	84.14	42580	76.51
39890	159.65	40340	158,19	40790	153.36	41240	111.41	41690	101.57	42140	85.10	42590	77.57
39900	158.40	40350	157.44	40800	152,00	41250	111.78	41700	100.89	42150	85.89	42600	78.57
39910	156.71	40360	156.69	40810	150.77	41260	112.30	41710	100.45	42160	86.81	42610	79.55
39920	154.67	40370	155.80	40820	149.81	41270	113.15	41720	100.27		87.61	42620	80,30
39930	152.61	40380	154.53	40830	149.10	41280	114.00	41730	99.92	42180	88.23	42630	80.85
39940	150.85	40390	153.29	40840	148.89	41290	115.11	41740	99.96	42190			
39950	149.30	40400	151.81	40850	148.86	41300	116.24	41750			88.92	42640	81.15
39960	147.92	40410	150.31		148.87	41310	117.49	41760	99.84	42200	89.31	42650	81.23
39970	147.13	40420	149.03	40870	149.24	41320			99.68	42210	89.63	42660	81.01
-,,	• • • • • • •	70120	. 4 , , 6 0 3	44810	177617	41320	118.93	41770	99.69	42220	89.88	42670	80.55
39980	146.55	40430	147.73	40880	149.61	41330	120.21	41780	99.33	42230	89.98	42680	79.97
39990	146.29	40440	146.64	40890	149.90	41340	121.57	41790	98.91	42240	90.04	42690	79.29
40000	146.21	40450	145.67	40900	150.11	41350	122.92	41800	98.46	42250	90.06	42700	78.53
40010	146.15	40460	145,13	40910	149.89	41360	123.84	41810	97.79	42260	89.99	42710	77,76
40020	146.25	40470	144.90	40920	149.62	41370	124.69	41820	97.03	42270	90.00	42720	77.01
				10,20	,,	41370	124.07	41850	91.03	42210	90.00	42720	11.01
40030	146.10	40480	145.00	40930	148.91	41380	125,41	41830	96.34	42280	89.94	42730	76.28
40040	145.85	40490	145.21	40940	147.66	41390	125.90	41840	95.29	42290	89.81	42740	75.63
40050	145.77	40500	145.67	40950	145,99	41400	126.46	41850	94.54	42300	89.70	42750	74.98
40060	145.50	40510	146.47	40960	144.00	41410	126.90	41860	93.76	42310	89.47	42760	74.39
40070	145.49	40520	147.08	40970	141.56	41420	127.11	41870	93.08	42320	89.11	42770	73.89
40080	145.10	40530	147.71	40980	139.09	41430	127.54	41880	03 43	42330	00.43	42700	72 44
40090	145.01	40540	148.60	40990	135.96	41440	128.00	41890	92.62 92.18		88.62	42780	73.46
40100	144.93	40550	149.42		133.06	41450	128.36			42340	87.90	42790	73.18
40110	144.53	40560	150.46	41010	129.98			41900	91.88	42350	87.02	42800	72,97
	144.44	40570	151.45	41020		41460	128.85	41910	91.60	42360	86.05		
40220		40370	134,43	41020	127.05	41470	129.02	41920	91.29	42370	84.82		
40130	144.30	40580	152,65	41030	124.29	41480	129,08	41930	90.92	42380	83,63		
40140	144.23	40590	154.07	41040	121.92	41490	128.84	41940	90.53	42390	82.26		
40150	144.39	40600	155.33	41050	119.68	41500	128.32	41950	89.84	42400	80.89		
40160	144.38	40610	156.71	41060	117.80	41510	127.58	41960	89.14	42410	79.60		
40170	144.66	40620	158,21	41070	116.31	41520	126.62	41970	88.25	42420	78.41		
40180	144.74	40630	159.44	41080	115.10	41530	125.31	41980	07 10	/2/20	77 10		
40190	145.01	40640	160.54	41090	114.21				87.18	42430	77.18		
40200	145.58	40650	161.57		113.70	41540	123.91	41990	86.27	42440	76.13		
40210	146.25	40660	162.19	41110		41550	127.48	42000	85.24	42450	75.19		
40220					113.14	41560	120.81	42010	84.35	42460	74.37		
40220	147.02	40670	162,74	41120	112.98	41570	119.24	42020	83.56	42470	73.72		
40230	148.25	40630	163,10	41130	112.85	41580	117.58	42030	82.84	42480	73.20		
40240	149.32	40690	163,01	41140	112.76	41590	115.85	42040	82.31	42490	72.82		
40250	150.74	40700	163.05		112.68	41600	114,12	42050	81.88	42500	72.56		
40260	152.27	40710	162.52		112.70	41610	112.38	42060	81.65	42510	72.51		
	153.62		161.97		112.40		110.63	42070	81.55	42520	72,60		
		, - 3				-1014		72010	0.000	45350			

Table 5. Comparison of exospheric temperatures as a function of the smoothed 10.7-cm solar flux \overline{F} .

F	T _{1/2} (°K)								
- .	. 1	Т	Н						
70	720.9	784.2	864.0						
100	860.5	865.4	944.2						
150	1057.2	1000.8	1078.0						
200	1227.4	1136.2	1212.0						
250	1380.7	1271.6	1345.4						
300	1522.2	1406.9	1479.2						

These three temperature curves are shown in Figure 5. As can be seen, the slope of the J curve is greater than that of the straight lines T and H. For $\overline{F} = 103$, the J temperatures are the same as T, while for $\overline{F} = 175$, they are the same as H. It should be remarked that the slopes of both the H and the T models were derived from relatively short time intervals during 1969 to 1971, when solar activity hovered around a flat maximum without large changes, whereas that of the J models was derived from a 17-year interval that comprised two periods of minimum solar activity and two maxima, of which one was the highest in 200 years.

The reaction of the exospheric temperature to a change in F is not instantaneous. We find (Jacchia, Slowey, and Campbell, 1973) a lag Δt that varies from 0.9^d at 12^h noon local solar time (LST) to 1.6^d at 0^h LST according to the equation

$$\Delta t = 1.26 + 0.37 \sin (H - 92^{\circ}) ,$$

$$\pm .12 \pm .17 \pm 25$$
(23)

where H is the hour angle of the sun, i.e., LST + 12^h. According to Paul, Volland, and Roemer (1974), the lag is a little greater, although almost exactly in phase with the above expression:

$$\Delta t = 1.74 + 0.26 \cos H$$
.

Figure 5. Comparison between the temperatures of the present models (J) with those of the models of Thuillier et al. (1976) (T) and Hedin et al. (1974) (H) as a function of the smoothed 10.7-cm solar flux \overline{F} , for $F = \overline{F}$ and $K_p = 0$.

3. THE DIURNAL VARIATION

Our approach in dealing with the diurnal variation follows, in its main lines, the pattern established in our previous models, although a higher degree of sophistication is required to represent the recently discovered height-dependent phase shifts in the variation of the individual atmospheric species. We shall still consider the phenomenon of the diurnal variation in its global aspect, giving equations valid for the whole earth, from which the variation for any given latitude and season can be derived as a particular case.

At any instant, the global distribution of the exospheric temperatures will show a nighttime minimum T_0 and a daytime maximum T_M , in opposite hemispheres; let their arithmetic mean be $T_{1/2}$. In previous models, we had taken T_0 as the basic temperature to relate to the solar flux F and to use in the equations defining the daily variation. Here we shall use $T_{1/2}$ instead.

In the older models, we had assumed that the ratio T/T_0 could be expressed as $T/T_0 = 1 + RD$, where R is a constant, $D = \sin^m \theta + (\cos^m \eta - \sin^m \theta)$ f(H) and $\eta = \frac{1}{2} \left| \phi - \phi_M \right|$; $\theta = \frac{1}{2} \left| \phi + \phi_M \right|$, ϕ being the latitude of a given point and ϕ_M the latitude of the point where the maximum daily temperature occurs; m is a constant close to 2, and f(H) a function of the hour angle H of the sun that varies between the limits 0 and 1. When m = 2, the expression for D reduces to

$$D = \frac{1}{2} \sin \phi_{M} \sin \phi + \cos \phi_{M} \cos \phi f(H) .$$

As we can see, D consists of two terms, of which the first is seasonal-latitudinal and thus independent of local time. The two terms are mutually constrained by the presence of $\sin \phi_M$ in the first and $\cos \phi_M$ in the second, thus making the seasonal-latitudinal term dependent on the diurnal term. In the present models, we shall eliminate this unnecessary constraint and express $T/T_{1/2}$ as follows:

$$\frac{T}{T_{1/2}} = 1 + c_1 \frac{\delta_{\odot}}{\epsilon} \sin \phi + c_2 \cos \phi \left[f(H) - \frac{1}{2} \right] , \qquad (24)$$

where c_1 and c_2 are two constants, δ_{\odot} is the declination of the sun, and ϵ is the obliquity of the ecliptic, 23.44; f(H) determines the shape of the diurnal temperature curve. We find that both the N_2 temperature curve (Mayr, Hedin, Reber, and Carignan, 1974) and the Doppler temperature curve (Thuillier et al., 1976), obtained from two separate experiments on the OGO 6 satellite, can be remarkably well represented by an equation of the form

$$f(H) = \cos^3 \frac{1}{2} (H + \beta) + c_3 \cos [3(H + \beta) + \chi]$$
 (25)

For the N_2 temperature curve, $\beta = -50^{\circ}$ and $c_3 = 0.14$; for the Doppler temperature curve, $\beta = -72^{\circ}$ and $c_3 = 0.08$; for both, $\chi = -75^{\circ}$. The difference in β results in a phase difference of 1.5 hours between the two temperature curves, but this will be of no immediate concern to us, as we shall presently see.

A fit of equation (24) to the spherical-harmonics model by Thuillier et al. (1976) yields $c_1 = 0.15$ and $c_2 = 0.24$. It is noteworthy that, assuming $c_1 = 0.15$, we obtain exactly the same value of c_2 , i.e., 0.24, from a least-squares analysis of 30,373 densities derived from the drag of six satellites with perigee heights between 350 and 850 km: this leads to the important conclusion that the Doppler temperatures also account very well for the amplitude of the diurnal variation of atomic oxygen. We have therefore adopted the values

$$c_1 = 0.15$$
 , $c_2 = 0.24$, $c_3 = 0.08$.

As for β , the value -72° derived from the Doppler temperatures gives a minimum temperature at 6.2 and a maximum at 17.6 LST, both about 1.5 hours later than incoherent-scatter temperatures (McClure, 1969, 1971; Carru and Waldteufel, 1969; Salah and Evans, 1973). Since the phase of the Doppler temperature, according to Thuillier et al., is very strongly affected by the way the observational material is

screened, we prefer to lean in the direction of incoherent-scatter temperatures and have adopted $\beta = -60^{\circ}$, which gives a minimum at 5.4° and a maximum at 16.8° LST.

The OGO 6 mass-spectrometer analysis (Mayr et al., 1974) has revealed that the density of each atmospheric constituent peaks at a different hour of the day. A comparison with the lower altitude San Marco 3 data (Newton, Kasprzak, Curtis, and Pelz, 1975) shows that the phase shift varies with height, while satellite-drag analysis (Jacchia, Campbell, and Slowey, 1973) indicates that the total density always peaks at the same time, independently of height. To describe such behavior, we must make β variable (Jacchia, 1974) in equation (25):

$$\beta_{\mathbf{i}} = \beta_0 + \beta_1 \left(\frac{\overline{\mathbf{M}}}{\overline{\mathbf{M}}_{\mathbf{i}}} - 1 \right) \quad , \tag{26}$$

where β_0 and β_1 are two constants, \overline{M} is the mean molecular mass, and M_i is the mass of the atmospheric species i (hydrogen excluded); \overline{M} can be evaluated from the models as a function of z and $T_{1/2}$. For the two constants, we have adopted

$$\beta_0 = -35^{\circ}$$
 , $\beta_1 = 27^{\circ}$.

Each β_i defines a different $f_i(H)$, so that in equation (24), we are presented with a new parameter, a pseudo-temperature Θ_i , different for each species i:

$$\frac{\Theta_{\mathbf{i}}}{T_{1/2}} = 1 + 0.15 \frac{\delta_{\bigcirc}}{\epsilon} \sin \phi + 0.24 \cos \phi \left[f_{\mathbf{i}}(\mathbf{H}) - \frac{1}{2} \right]$$
 (27)

with

$$f_i(H) = \cos^n \frac{1}{2} (H + \beta_i) + 0.08 \cos [3(H + \beta_i) - 75^\circ]$$

and

$$n = 2 + \cos^2\left(\frac{\phi^2}{90^\circ}\right) .$$

Here we have replaced the exponent 3 in equation (25) with a variable exponent n, which decreases from 3 at the equator to 2 at the poles (where the diurnal term vanishes). This device (Jacchia, 1973) eliminates a discontinuity in $dT/d\phi$ (or $d\Theta_i/d\phi$) at the poles – a feature that seems to have caused some discomfiture to a few investigators (Blum and Harris, 1973).

Figure 6 shows the diurnal variation of the exospheric temperature at the equator at the time of the equinoxes when $T_{1/2}=1000~\rm K$. The global distribution of exospheric temperatures for quiet geomagnetic conditions ($K_p=0$) for the equinoxes and for the June solstice is given in Table 6 and illustrated in Figure 7. The variation with height in the hour of the maximum density of the individual constituents is shown in Figure 8.

Figure 6. The diurnal variation of the exospheric temperature at the equator at the time of equinoxes, when $T_{1/2} = 1000$ K, represented by the heavy curve. The light curve represents the variation minus the terdiurnal term.

Table 6. Global distribution of exospheric temperatures at the time of the equinoxes and of the June solstice.

54	0001	977 962	948 936	927	920	916	915	916	920	927	936	948	296	977	066	1000
23	1000	981 968	955	935	929	956	925	956	929	935	446	955	968	981	992	1000
25	966	989 980	970 961	954	950	244	946	947	950	954	961	970	980	989	966	1000
21	1000	1001 998	993	986	984	983	983	983	984	986	686	993	966	1001	1002	1000
50	1000	1016 1020	1023	1027	1029	1030	1031	1030	1029	1027	1025	1023	1020	1016	1009	1000
19	1000	1030 1043	1053	1069	1074	1078	1079	1078	1074	1069	1061	1053	1043	1030	1016	1000
18	1000	1041 1059	1075	1100	1108	1113	1115	1113	1108	1100	1089	1075	1059	1041	1021	1000
11	1000	1045 1066	1084	1113	1123	1129	1131	1129	1123	1113	1100	1084	1066	1045	1023	1000
91	1000	1043 1062	1080	1108	1117	1123	1125	1123	1117	1108	1096	1080	1062	1043	1022	1000
Š	1000	1036 1053	1067	1090	1098	1103	1104	1103	1098	1090	1080	1067	1053	1036	1018	1000
7	1000	1028 1040	1051	1068	1073	1077	1078	1017	1073	1068	1060	1051	1040	1028	1015	1000
13	1000 1012	1021 1029	1036	1046	1050	1052	1053	1052	1050	1046	1041	1036	1029	1021	1012	1 n00
12	1000	101 6 1020	1023	1027	1029	1030	1031	1030	1029	1027	1025	1023	1020	1016	1009	1000
11	1000	1010 1011	1010	1009	1009	1009	1009	1009	1009	1009	1009	1010	101	1010	1006	1000
10	1000	1002 998	994	986	985	984	983	984	985	986	989	466	966	1002	1002	1000
٥	1000	990	972	958	954	952	951	952	954	958	496	972	982	990	166	1000
co	1000	977	948	927	920	916	915	916	920	927	936	946	962	716	066	1000
. ~	1000	964	927	900	891	988	884	886	891	006	912	927	945	964	983	1000
•	1000 978	956 934	915	884	874	898	866	868	874	884	897	915	934	956	978	1000
ß	1000	954 932	913	882	872	866	864	866	872	882	896	913	932	954	477	1000
•	1000 978	957	920	892	883	877	875	877	883	892	904	920	938	957	978	1000
m	1000	943	930	905	897	892	890	892	897	905	916	930	945	963	981	1000
8	1000	969 953	938	916	606	706	903	906	606	916	926	938	953	696	985	1000
7	1000	973 958	944	922	916	911	910	911	916	922	932	946	958	973	988	1000
	80°	70.	00.4	30	20	10	0	10	-20-	-30	-40	-50	-60	-70	-80	-06-

00.0

DECLINATION OF SUN =

		0	~	8	25	6	("		2 (7.	42	2	ç		6.0	7 9	2	34	33	45	9 (y (Š
	77			1118																			
•	23			1122																			
	22			1130																			
	21	1150	1150	1142	1128	1108	1004		1001	1036	1010	983			933	911	893	878	868	1	20.	824	820
	50	1150	1157	1157	1150	1138	1 1 3 3	7711	1102	1080	1057	1631		001	978	952	929	906	008		20	861	850
	19	1160	1164	1171	1172	1168		0011	1144	1125	1104	1070		7601	1023	466	965	938	-		889	868	850
	18	1150	2 2	1182	1180	0		C 0 1	1175	1159	1139	- 2		201	1057	1025	992	960	020	,	90	873	850
	11	1150	1120	1186	1 2 0 4	100		611	1188	1174	1155	1131		7011	101	1038	1004	696	46.0	10	406	875	850
	91	0311	1160	1184	1102	105	1	7611	1183	1169	1149	1 2 5		1601	1066	1033	666	965	033	10	706	874	850
23.44	15	9	1150	1177	1192	1102	9 1	9/11	1165	1149	1120	7011		1011	1047	1015	984	952	200	,	895	871	850
23	14		271	7911	7 2 2 2	771	0011	1157	1143	1124	1103	000	0101	1021	1022	666	490	936		1 1	887	867	850
	13	į.	2411	6011	1150	1161		1138	1121	1101	1078	2 2 2	60.1	1026	866	971	945	921		2	881	864	850
11 Z	15		1150	1157	200	1130	0011	1122	1102	1080	1057		1001	1004	978	952	929	000		9	875	861	850
OF SUN	:		1150	1124	1771	1100	6711	1106	1084	1060	1035		7001	983	95B	934	913	805		48	869	859	850
SECLINATION OF	01		1150	0611	0 0 0 0 0	0711	8011	1086	1061	1036	1010	2 6	2	958	933	911	803	870		202	861	855	850
CL I NA	o •	1	1150	***11	1611	1111	801	1061	1033	1005	0.0		42	925	903	883	868	957		30R	849	849	850
9	00		1150	113/	9111	7601	1003	1033	1002	972	270	776	616	890	869	852	0440	76.0		833	836	845	850
	~		1150	1131	6011		7401	1008	975	040		1 6	488	960	840	825	9 1 6	2 2	1 1	613	823	835	850
	•	1	1150	1126	601	100	1029	964	950	0.0			800	842	822	800	00	0		804	815	A31	850
	2	•	1150	1125	6601	7901	1028	992	957	0 0	1 0	260	864	840	A21	407	0		0 (808	813	820	850
	4		1150	1126	1098	1067	1035	1001	240	46	1 0	0	875	851	83	718	0	9 0	0	808	816	931	850
	М		1150	1129	1104	1075	1044	1012	0 80	2 0	410	¥16	890	866	4	2	000	9 6	0 1 0	816	822	4 E 0	850
	2	ŀ	1150	1133	1110	1083	1053	1022		1 6	000	930	903	878	7	1 4 0		9 0	2 0	823	A28		850
	p=4		1150	1135	1114	1088	1059	1028	700		0 0	156	910	88.5	44	7 7 0		0 0	679	828	832	0.70	850
			•06	80	70.	60	20.	707			• 0 •	01	0	10.					• 20.	-60	7.0		00

a) Equinoxes.

Figure 7. Global distribution of the exospheric temperature for quiet geomagnetic conditions (K_p = 0). The coordinates are local solar time and geographic latitude. The modifications introduced by disturbed geomagnetic conditions are illustrated in Figure 10.

Figure 8. Local solar time of the maximum density of four atmospheric constituents as a function of height, for $T_{1/2} = 1000$ K.

Warning. Densities derived from satellite drag have a limited resolution in local solar time, especially when the orbital inclination is small and when the density scale height at perigee is large — not to speak of small orbital eccentricities, which make the density insensitive to local solar time. This limited resolution will result in a smaller value of c3, the amplitude of the terdiurnal term; also, c2 might be decreased, although to a smaller degree. In some cases, the outright elimination of the terdiurnal term might even be advisable in comparing drag-derived densities with the models.

Notice also that, with the introduction of the terdiurnal term, $T_{1/2}$ is no longer the arithmetic mean between the daytime maximum and the nighttime minimum: it is, rather, the arithmetic mean of the extrema of the diurnal term.

Diurnal variations of hydrogen. Brinton et al. (1975) have inferred the diurnal variation of hydrogen at 250 km using Atmosphere Explorer C measurements around the December solstice 1974–75. They found a variation by a factor of 2 in the time-dependent component at the equator and at midlatitudes, with a maximum around 3^h LST and a minimum around 16^h or 17^h LST. The time-independent component also shows a variation by a factor of 2, with a maximum in middle-high latitudes in the winter hemisphere and a minimum in high latitudes in the summer hemisphere. All of this is in fair agreement with our models if we enter them with the actual temperature, i.e., if we use equations (26) and (27) with $\beta = \text{const} = -60^\circ$: we obtain a variation by a factor of 2.0 in the time-dependent component and by a factor of 1.6 in the time-independent component [these components are the two terms of equation (24)]. It shows that not only the long-term variations, such as those with the solar cycle, but also the short-term variations can be handled, to a fair degree of approximation, by a hydrogen model in which the density at any given height is controlled by escape.

• .

4. VARIATIONS WITH GEOMAGNETIC ACTIVITY

The formula relating the exospheric temperature to the decimetric solar flux, equation (20), is valid for ideally quiet geomagnetic conditions, $K_p = 0$. In the general case, when $K_p \neq 0$, geomagnetic activity produces a temperature increase Δ_G^T , which depends on magnetic latitude. At the same time, atmospheric composition changes, not only because of the change in scale height induced by Δ_G^T , but also because of a change in the interface between the regimes of mixing and diffusion. In addition, there is a density wave propagating from high to low magnetic latitudes. In this model of the geomagnetic phenomenon in the upper atmosphere, we follow the analytical formulation given by Jacchia, Slowey, and von Zahn (1976, 1977a).

Let us denote by Δ_G log n_i the change in the logarithm of the number density of the species i that occurs as K_p changes from zero to a given value. We assume that Δ log n_i is the sum of three separate effects:

$$\Delta_{\mathbf{G}} \log \mathbf{n_i} = \Delta_{\mathbf{T}} \log \mathbf{n_i} + \Delta_{\mathbf{H}} \log \mathbf{n_i} + \Delta_{\mathbf{e}} \log \mathbf{n_i} \quad , \tag{28}$$

where Δ_T log n_i is the purely thermal component, originated by the change in scale height caused by the temperature increase $\Delta_G T$. In previous models, we had assumed that Δ_T log n_i can be evaluated from static models by taking the difference between the value of $\log n_i$ that corresponds to the "quiet" $(K_p = 0)$ temperature $T_0(\infty)$ and the one that corresponds to $T_0(\infty) + \Delta_G T_\infty$, $T_0(\infty)$ being the value of T_∞ from equation (24) with $\beta = -60^\circ$. Admittedly this is a shaky assumption, because it implies that the shape of the temperature profiles is not altered by the magnetic disturbance. Since a distortion of the profiles is likely to occur, especially in the 100- to 120-km region, we must expect our model to become poorer as we approach the homopause boundary. The only remedy to such a situation, as we can see it, is to integrate the diffusion equation (16) with new "perturbed" temperature profiles; more about this in Section 4.1. In equation (28), Δ_H log n_i is the contribution caused by a change in the height z_H of the homopause as a consequence of the magnetic disturbance, and Δ_e log n_i is the contribution of the "equatorial wave," the density pileup in the equatorial regions as a consequence of convection toward the equator; it affects all atmospheric constituents by the same amount.

4.1 The Thermal Component

For a given level of geomagnetic activity, measured by the K_p index, we express the geomagnetic heating, i.e., the increase $\Delta_G T$ in the exospheric temperature above the quiet temperature level corresponding to $K_p = 0$, as a function of the invariant magnetic latitude ϕ_I (McIlwain, 1966), which we have found to give better results than the centered-dipole geomagnetic latitude ϕ' . If ϕ_I is not readily available, ϕ' can be used without too much loss in accuracy. For the convenience of the users of these models, we give here the equation to compute ϕ' assuming geographic coordinates for the north geomagnetic pole of $L=291\,^{\circ}E$, $\phi=+78\,^{\circ}3$:

$$\sin \phi' = 0.9792 \sin \phi + 0.2028 \cos \phi \cos (L - 291^{\circ})$$
, (29)

where L is the longitude counted eastward from Greenwich.

To account for the propagation time τ , we have introduced a fictitious index K_p' , equal to K_p at the time t - τ ; for τ , we use

$$\tau = 0.1 + 0.2 \cos^2 \phi_{\text{T}} . \tag{30}$$

We then compute

$$\Delta_{\mathbf{G}}^{\mathbf{T}}_{\infty} = \mathbf{A} \sin^{\mathbf{m}} \phi_{\mathbf{I}} \quad , \tag{31a}$$

where

A = 57.5 K'_p
$$\left[1 + 0.027 \exp(0.4 \text{ K'}_p)\right]$$
, (T in °K). (31b)

We find that m = 4 gives satisfactory results in most cases, but there is some indication that, as the perturbation extends to lower latitudes, m becomes smaller, perhaps as small as 3.

As we said earlier, a change in T_{∞} only will not give satisfactory results in the lower thermosphere: it becomes necessary to modify the whole temperature profile from the boundary upward, adding a correction $\Delta_G T(z)$ to the "quiet" temperatures $T_0(z)$. After some experimenting, we found that an expression of the form

$$\Delta_{G} T(z) = \Delta_{G} T_{\infty} \tanh \left[c(z - z_0) \right] , \qquad (z > z_0) , \qquad (32)$$

with a proper selection of the constants c and z_0 , will provide a disturbed temperature profile capable of representing density observations in the 150- to 200-km region without substantially altering the results obtained at greater heights by using a change in the exospheric temperature only. Expressing z in kilometers, values of

$$c = 0.006$$
 , $z_0 = 90$

introduced into equation (32) lead to disturbed densities [equation (28)] that are in reasonable agreement with densities of N₂, Ar, and O observed at 160 km by Philbrick, McIsaac, and Faucher (1976) during a magnetic storm.

4.2 Effect of a Change in the Height of the Homopause

We assume that the temperature increase Δ_G^T is accompanied by a change Δz_H in the height of the homopause, where Δz_H is a strongly nonlinear function of Δ_G^T :

$$\Delta z_{H} = 5.0 \times 10^{3} \sinh^{-1} (0.010 \Delta_{G}^{T})$$
, (z_H in meters). (33)

The mean molecular mass at the height of the homopause is very nearly 28, so we assume that a change in z_H does not affect N₂; for all other constituents, we have

$$\Delta_{\mathbf{H}} \log \mathbf{n_i} = \left[\frac{\partial \log \mathbf{n(N_2)}}{\partial \mathbf{z}} - \frac{\partial \log \mathbf{n_i}}{\partial \mathbf{z}} \right]_{\mathbf{z_{H+}}} \Delta \mathbf{z_H} = \alpha_i \Delta \mathbf{z_H} \quad . \tag{34}$$

The subscript z_{H+} indicates that the derivatives in the bracket must be evaluated at a point immediately above the homopause (assumed to be a layer of zero thickness), in diffusive regime. From the models, we obtain

$$a(Ar) = +3.07 \times 10^{-5} \text{ (mks)}$$
,
 $a(O_2) = +1.03 \times 10^{-5} \text{ (mks)}$,
 $a(N_2) = 0$
 $[a(O) = -4.03 \times 10^{-5} \text{ (mks)}]^*$,
 $a(He) = -6.30 \times 10^{-5} \text{ (mks)}$.
*Use $-4.85 \times 10^{-5} \text{ (mks)}$.

While the observed variations of Ar, N_2 , and He are consistent with these theoretical values of a, we find that for atomic oxygen we need a value of a close to -4.85×10^{-5} . This is not surprising, considering that at the height of the homopause, oxygen dissociation is still very active, so that O is very far from being in diffusion equilibrium.

4.3 The Equatorial Wave

The equatorial wave can be represented by

$$\Delta_{e} \log n_{i} = \Delta_{e} \log \rho = 5.2 \times 10^{-4} \text{ A } \cos^{4} \phi_{I}$$
, (35)

where ρ is the total density. By using A [equation (31b)] in equation (35), we automatically assume that the travel time of the equatorial wave is τ , the same as the propagation time for the temperature. Although there is no compelling reason to believe that this assumption is entirely correct, it would be very difficult to disentangle the two propagation times if they were different. All we can say is that at high latitudes, we observe a lag of about 0.1 in the density variations with respect to those in K_p , while in low latitudes, the lag amounts to about 0.3.

The density variation of four atmospheric constituents as a function of the invariant latitude ϕ_{I} is shown in Figure 9, together with the corresponding variation of the exospheric temperature.

4.4 The Global Temperature Distribution

Owing to its latitude dependence, the geomagnetic effect causes the maximum temperature to be shifted in the direction of the magnetic poles. Figure 10 shows the temperature distribution along the meridional circle crossing the geomagnetic poles at 17^h LST in one hemisphere and 5^h LST in the other, for four levels of geomagnetic activity. As can be seen, it takes only a very moderate degree of magnetic activity ($K_p \approx 2$) to shift the maximum temperature at the time of equinoxes from the equator to the polar regions.

<u>Warning.</u> Mass-spectrometer data show that there is no appreciable smoothing in the variation of n_i when compared with the variation of K_p . In other words, the reaction time of the atmosphere is smaller than the 3-hour

resolution of the K_p indices. If these models are compared with observations having a lower degree of resolution, such as some satellite-drag densities, it is essential to use in the equation a set of K_p 's smoothed to match the resolution of the data. Also, with a limited resolution such as in satellite drag, the temperature peak at the magnetic poles will appear flattened, with the result that the exponent m in equation (31a) and the numerical coefficient in equation (31b) will both become smaller; the effect will be a complicated function of the orbital inclination and of the density scale height at perigee, which must be evaluated before accurate comparisons can be made between drag-derived densities and those of the models. Another result of limited resolution is that the rotation of the earth under a satellite orbit tends to reduce or cancel the difference between magnetic and geographic coordinates. Whenever the smallest time interval in which drag is detectable is 1 day or more, geographic coordinates should be used.

Figure 9. The density variation of four atmospheric constituents as a function of the invariant latitude ϕ_I , for various heights when the geomagnetic index $K_p = 5$. The curves were computed using a "quiet" ($K_p = 0$) exospheric temperature of 900 K. The diagram in the lower left corner depicts the variation of the total density; that in the lower right corner gives the corresponding variation in the exospheric temperature.

Figure 10. Exospheric temperature profiles along the complete (360°) meridional circle along which the local solar time is 17^h in one hemisphere and 5^h in the other, for various levels of geomagnetic activity. Even a moderate level of activity ($K_p\approx 2$) has the effect of shifting the temperature maximum from the equator to the poles at the time of equinoxes.

5. SEASONAL-LATITUDINAL VARIATIONS

When we deal with seasonal-latitudinal variations, we must first of all distinguish between the large variation of composition that is observed throughout the thermosphere and higher and the seasonal variation of temperature and density in the stratosphere and mesosphere, which spills over into the lower thermosphere and seems to vanish at heights above 140 to 150 km. To avoid confusion, we call the first the "thermospheric" and the second the "mesospheric" seasonal-latitudinal variation.

5.1 The Thermospheric Seasonal-Latitudinal Variation

The observed thermospheric seasonal-latitudinal variation of density and composition is the result of two distinct contributions. The first comes from the seasonal-latitudinal component of the diurnal temperature variation, $c_1(\delta_{\bigcirc}/\epsilon)$ sin ϕ in equation (24). Its effect is to change the density and composition through a change in the scale height of the individual components; it is, therefore, strongly height dependent. When the contribution from this effect is subtracted, we are left with an intrinsic seasonal-latitudinal variation, essentially independent of height, whose origin must be traced to the lower boundary of the thermosphere. The so-called "winter helium bulge" is the first known example of this type of variation.

This "intrinsic" part of the thermospheric seasonal-latitudinal variation can be represented by a formula similar to the sin term of equation (24). Let $\Delta_{\rm SL}$ $\log n_{\rm i}$ measure the departure of the number density of the species i from its yearly mean as a result of this variation. We can write

$$\Delta_{\text{SL}} \log n_{\mathbf{i}} = c_{\mathbf{i}} \frac{\delta_{\bigcirc}}{\epsilon} \sin \phi . \tag{36}$$

Clearly, we cannot determine the c_i 's independently of c_1 , the corresponding coefficient in equation (24). This means that we must have a good model of the diurnal temperature variation, or at least of its seasonal-latitudinal component, before we can proceed to compute the c_i 's.

Using the model of the diurnal variation described in Section 3, with $c_1 = 0.15$ as derived from the OGO 6 Doppler temperatures, we have determined values of c_i from the ESRO 4 data on four species (Jacchia, Slowey, and von Zahn, 1977b), as well as from the drag of six satellites (for O and He only); they are given in Table 7.

Table 7. Parameters of the seasonal-latitudinal variation.

Species	ESRO 4	Satellite drag	Adopted
$\overline{\mathrm{N}_2}$	+0.06	- .	0
o	-0.15	-0.18	-0.16
He	-0.79	-0.76	-0.79
\mathbf{Ar}	0.00	_ ·	0
$o_{2}^{}$		-	[0?]

5.2 The Mesospheric Seasonal-Latitudinal Variation

As is well known, the temperature in the troposphere and stratosphere is warmer in summer and colder in winter; at a height of 66 km, however, the situation reverses, and at the mesopause, around 88 km, the variation reaches its greatest amplitude, with a minimum in summer and a maximum in winter. Proceeding to greater heights, the amplitude decreases and reaches zero at 100 km; above 100 km, it is again warmer in summer and colder in winter. The density, for obvious reasons, follows a phase-shifted pattern: it is higher in summer than in winter throughout the stratosphere and mesosphere, to a height of 91 km, where there is an isopycnic layer. At 100 to 120 km, the density is higher in winter than in summer, but there is a second reversal somewhere around 140 to 160 km, because at a height where the daily variation becomes observable, i.e., at 180 to 200 km, we again have the highest densities in summer. At these heights, the picture merges with the thermospheric variations. There must be a transition layer, but it is difficult to establish with any degree of assurance what its height and thickness are. In a general theory that makes use of solar-energy absorption and reradiation variable with height (or, better, with density and composition), there should be no reason for distinguishing between mesospheric and thermospheric seasonal-latitudinal variations; in the absence of such a theory, however, the distinction becomes a practical necessity.

Tables of monthly temperature, pressure, and density means at heights from 25 to 110 km for latitudes from 0° to 70° have been compiled by Groves for the COSPAR International Reference Atmosphere (CIRA, 1972). Trying to fit a simple and consistent analytical model to these data, even when only heights above 90 km are considered, appears to be a hopeless task. In the 1971 models, we fitted the densities only, leaving the temperatures alone and using our imagination for heights above 120 km. We repeat here the formula, with warnings of caution to the users:

$$\Delta_{\text{s}\ell} \log \rho = \frac{\phi}{|\phi|} \text{SP sin}^2 \phi \quad , \tag{37}$$

where the maximum half-range

$$S = 0.014 (z - 91) \exp [-0.0013 (z - 91)^{2}]$$
, (z in km) (38a)

and the phase

$$P = \sin(2\pi\Phi + 1.72) \quad ; \tag{38b}$$

 φ is the geographic latitude and Φ = (t - Jan. 1)/365. Values for S and P are tabulated in Table 8.

We find that $\Delta_{s\ell}$ log ρ as expressed by equations (37) and (38) is roughly consistent with temperature deviations $\Delta_{s\ell} T$ from the basic models given by

$$\Delta_{s\ell} T = -2.9P(z - 102.5) \exp(-7.8 \times 10^{-5} |z - 102.5|^{2.7}) . \tag{39}$$

Table 8. The "mesospheric" seasonal-latitudinal density variation according to equation (37): $\Delta_{\text{Sl}} \log \rho = (\phi/|\phi|)$ SP $\sin^2 \phi$.

a) Maxim	num half-range	S = 0	.014 (z -	91) e	xp[-0.	0013 (z -	. 91) ²]
----------	----------------	-------	-----------	-------	--------	-----------	----------------------

z (km)	S.	z (km)	S	z (km)	S
91	0.000	121	0.130	151	0.008
96	0.068	126	0.100	156	0.004
101	0.123	131	0.070	161	0.002
106	0.157	136	0.045	166	0.001
111	0.166	141	0.027	171	0.000
116 .	0.155	146	0.015		

b) Phase P = $\sin (2\pi \Phi + 1.72)^*$

Day	7	P	Day	7	P	Day	7	P	Day	P
Jan.	1	±0.989	Apr.	1	∓0.129	June	30	∓0.994	Sept. 28	±0.086
•	11	±0.948		11	∓0.297	July	10	∓0.961	Oct. 8	±0.255
	21	±0.880		21	∓0.456		20	∓0.900	18	±0.417
	31	±0.786	May	1	∓0.602		30	∓0.812	28	±0.567
Feb.	10	±0.668		11	∓0.73 0	Aug.	9	∓0.699	Nov. 7	±0.699
	20	±0.531		21	∓0.836		19	∓0.567	17	±0.812
Mar.	2	± 0.378		31	∓0.918		29	∓0.417	27	±0.900
	12	±0.214	June	10	∓0.972	Sept.	8	∓0.255	Dec. 7	±0.961
	22	± 0.043		20	∓0.99 8		18	∓0.086	17	±0.994
									27	±0.998

^{*}Take the upper sign for the Northern Hemisphere, the lower for the Southern Hemisphere.

6. THE SEMIANNUAL VARIATION

In the J65 models, the semiannual variation was represented by a temperature oscillation. We abandoned this model in J71 in favor of a density wave without a corresponding temperature variation and discussed the reasons for such a change (see also Jacchia, 1971b). Since then, several papers dealing with the semiannual variation have appeared. Wulf-Mathies (1972) found marginal evidence for a latitudinal dependence of the variation; Hedin et al. (1974) also found a weak latitudinal dependence, different for each atmospheric species; and according to Volland, Wulf-Mathies, and Priester (1972), the height dependence of the amplitude is almost entirely due to the semiannual component, the annual component being nearly independent of height. In all these papers, the analysis is limited to a relatively short time interval, from 1 to 3 years. As has been shown by King-Hele (1966), Jacchia, Slowey, and Campbell (1969), and Jacchia (1971b), the semiannual variation undergoes marked changes from year to year; this being the case, we still prefer to use the model of J71, which was derived from 12 years of satellite-drag data covering a wide range of heights. The pertinent equations are reported here with some minor modifications.

We express the semiannual density variation in $\log \rho$ as the product of two functions — one of the height z, and the other of time t:

$$\Delta_{sa} \log \rho = f(z) g(t) , \qquad (40)$$

with

$$f(z) = \left[0.04 \left(\frac{z}{200}\right)^2 + 0.05\right] \exp\left(-0.25 \frac{z}{100}\right) , \quad (z \text{ in km})$$
 (41)

and

$$g(t) = 0.0284 + 0.382 [1 + 0.467 \sin (2\pi\tau + 4.14)] \sin (4\pi\tau + 4.26) . \tag{42}$$

Here, τ is a periodic function of the fraction of the tropical year T corresponding to the time t

$$\Phi = \frac{t - t_0}{T}$$
, $(t_0 = Jan. 1.0)$, (43)

$$\tau = \Phi + 0.0954 \left\{ \left[\frac{1}{2} + \frac{1}{2} \sin \left(2\pi \Phi + 6.04 \right) \right]^{1.65} - \frac{1}{2} \right\}$$
 (44)

The absolute term in g(t), 0.0284, has the purpose of making $\int g(t) dt = 0$ over one cycle of the variation. Values of f(z) and g(t) are tabulated in Table 9.

Volland et al. (1972) decomposed the "semiannual variation" into an annual and a semiannual term, both strictly sinusoidal, and — as we mentioned — found that the amplitude of the annual term was nearly independent of height. They were able to reproduce the large observed difference in depth between the January and the July minima, but not the difference in height between the April and the October maxima, which they dismissed as probably not real, on the basis of a paper by Wulf-Mathies (1972). The difference, however, is real, although smaller than that between the minima, as can be seen from the independent analysis of all other investigators. If it is true that the amplitude of the annual component is nearly constant, there might be some advantage in using this feature. Accordingly, we offer here our alternate model constructed along the line of that by Volland et al.:

$$\Delta_{sa} \log \rho = f_1(z) g_1(t) + f_2(z) g_2(t)$$
 (45)

The subscript 1 refers to the annual component, the subscript 2 to the semiannual,

$$f_1(z) = 0.03 \tanh \left(0.6 \frac{z}{100}\right)$$
 , (46a)

$$f_2(z) = \left[0.017 \left(\frac{z}{100}\right)^2 + 0.015\right] \exp\left(-0.25 \frac{z}{100}\right) ,$$
 (46b)

and

$$g_1(t) = \cos [2\pi(\Phi - 0.047)]$$
 , (47a)

$$g_2(t) = \cos \left[4\pi(\Phi - 0.296)\right]$$
 (47b)

Table 9. Tables for the computation of the semiannual density variation using equation (40): $\Delta_{sa} \log \rho = f(z) g(t)$.

a) f(z)

z (km)	f(z)	z (km)	f(z)	z (km)	f(z)
100	0.070	500	0.301	900	0.347
150	0.096	550	0.319	950	0.340
200	0.127	600	0.332	1000	0.332
250	0.161	650	0.343	1050	0.323
300	0.194	700	0.349	1100	0.313
350	0.225	750	0.353	1150	0.301
400	0.254	800	0.353	1200	0.289
450	0.279	850	0.351		

b) g(t)

Φ	g(t)	Φ	g(t)	Φ	g(t)	Φ	g(t)
0.00	-0.145	0.26	+0.361	0.52	-0.478	0.78	+0.415
0.02	-0.178	0.28	+0.346	0.54	-0.508	0.80	+0.463
0.04	-0.188	0.30	+0.307	0.56	-0.522	0.82	+0.478
0.06	-0.178	0.32	+0.247	0.58	-0.517	0.84	+0.463
0.08	-0.150	0.34	+0.173	0.60	-0.490	0.86	+0.418
0.10	-0.106	0.36	+0.090	0.62	-0.439	0.88	+0.350
0.12	-0.049	0.38	+0.003	0.64	-0.364	0.90	+0.265
0.14	+0.020	0.40	-0.084	0.66	-0.267	0.92	+0.170
0.16	+0.097	0.42	-0.167	0.68	-0.150	0.94	+0.074
0.18	+0.176	0.44	-0.245	0.70	-0.022	0.96	-0.015
0.20	+0.249	0.46	-0.317	0.72	+0.108	0.98	-0.090
0.22	+0.309	0.48	-0.380	0.74	+0.231	1.00	-0.145
0.24	+0.348	0.50	-0.434	0.76	+0.336		

Here we have brought the amplitudes in line with our first model. As we said, this model does not reproduce the difference in the April and October maxima. A comparison between the semiannual variation computed with equations (40) to (44) and that computed with equations (45) to (47) is shown in Figure 11.

Figure 11. The semiannual density variation at 200 and 500 km, according to equations (40) to (44) (solid line) and according to equations (45) to (47) (dashed line).

It should be pointed out that if drag data from a single satellite are used to derive the semiannual variation, the annual component might get badly contaminated by the seasonal-latitudinal effect. It is only by using satellites in a variety of orbits and over long time intervals that the two effects can be clearly separated.

7. RAPID DENSITY FLUCTUATIONS

Density gauges on the Explorer 32 satellite have detected the existence of waves throughout the upper atmosphere in the height range from 286 (satellite perigee) to at least 510 km (Newton, Pelz, and Volland, 1969). An analysis of these waves indicates that they propagate in the neutral atmosphere. The waves are most prevalent at the higher latitudes near the auroral zone (the orbital inclination of the satellite is 65°) and were observed most frequently in the late evening and early morning hours, but they were not limited to those latitudes and times. The apparent vertical half-wave-lengths of the waves increase with altitude from 1 km at 286-km altitude to 70 km at 510-km altitude; their half-amplitudes in density range from the limit of detectability to a maximum of about 50% of the mean density. It appears that some of the observed wavelengths are integrally related, indicating the existence of "fundamental" wavelengths and of second, third, and fourth harmonics.

Analyzing mass-spectrometer data from the Atmosphere Explorer C satellite in the 150- to 350-km region, Reber, Hedin, Pelz, Potter, and Brace (1975) found that the waves are accompanied by a change in composition: to an increase in nitrogen and argon density there corresponds a decrease in the helium density, just as in the geomagnetic phenomenon.

These waves have been interpreted as free internal gravity waves propagating predominantly from north to south or from south to north, with maximum horizontal wavelengths between 130 and 520 km. The altitude dependence of the apparent vertical half-wavelengths results from the satellite moving with varying vertical velocity through a slowly propagating wave pattern with nearly vertical phase planes. It is tempting to visualize these waves as part of the mechanism by which energy deposited in the auroral zones is conveyed to lower latitudes.

.

8. SUMMARY OF FORMULAE USED IN THE TEXT

Solar activity

$$T_{1/2} = 5.48 \overline{F}^{0.8} + 101.8 F^{0.4}$$
 (20)

F to be taken at time $t - \Delta t$, where

$$\Delta t = 1.26 + 0.37 \sin (H - 92^{\circ})$$
 (23)

$$\overline{\mathbf{F}} = \frac{\sum \mathbf{w} \mathbf{F}}{\sum \mathbf{w}} \tag{21}$$

$$w = \exp \left[-\left(\frac{t - t_0}{\tau}\right)^2 \right] , \qquad (\tau = 71 \text{ days})$$
 (22)

Diurnal variation

$$\frac{\Theta_{\mathbf{i}}}{T_{1/2}} = 1 + 0.15 \frac{\delta_{\odot}}{\epsilon} \sin \phi + 0.24 \cos \phi \left[\mathbf{f_i(H)} - \frac{1}{2} \right]$$
 (27)

$$f_i(H) = \cos^n \frac{1}{2} (H + \beta_i) + 0.08 \cos [3(H + \beta_i) - 75^\circ]$$

$$n = 2 + \cos^2\left(\frac{\phi^2}{90^\circ}\right)$$

$$\beta_{\mathbf{i}} = -35^{\circ} + 27^{\circ} \left(\frac{\overline{\mathbf{M}}}{\mathbf{M}_{\mathbf{i}}} - 1 \right) \tag{26}$$

(for actual temperature, $\beta_{\rm T}$ = -60°)

Geomagnetic activity

$$\Delta_{G} \log n_{i} = \Delta_{T} \log n_{i} + \Delta_{H} \log n_{i} + \Delta_{e} \log n_{i}$$
 (28)

$$\Delta_{\mathbf{G}}^{\mathbf{T}_{\infty}} = \mathbf{A} \sin^4 \phi_{\mathbf{I}} \tag{31a}$$

A = 57.5 K'_p
$$\left[1 + 0.027 \exp(0.4 \text{ K'}_p)\right]$$
 (31b)

 $K'_p = K_p$ at time $t - \tau$, where

$$\tau = 0.1 + 0.2 \cos^2 \phi_{\rm I} \tag{30}$$

$$\Delta_{G}T(z) = \Delta_{G}T_{\infty} \tanh [0.006(z - 90)]$$
, (z in km)

$$\Delta_{\mathbf{H}} \log n_{\mathbf{i}} = \alpha_{\mathbf{i}} \Delta z_{\mathbf{H}} \tag{34}$$

$$\Delta z_{H} = 5.0 \times 10^{3} \sinh^{-1} (0.010 \Delta_{G}^{T})$$
, (meters) (33)

$$\alpha(Ar) = +3.07 \times 10^{-5} , \qquad \alpha(O_2) = +1.03 \times 10^{-5} (?) , \qquad \alpha(N_2) = 0 ,$$

$$\alpha(O) = -4.85 \times 10^{-5} , \qquad \alpha(He) = -6.30 \times 10^{-5} \text{ (mks)}$$

$$\Delta_{\mathbf{e}} \log n_{\mathbf{i}} = 5.2 \times 10^{-4} \,\mathrm{A} \,\cos^4 \phi_{\mathbf{I}} \tag{35}$$

Seasonal-latitudinal variations

c(Ar) = 0

a) Thermospheric:

$$\Delta_{\rm SL} \log n_{\bf i} = c_{\bf i} \frac{\delta_{\bigodot}}{\epsilon} \sin \phi \tag{36}$$
 Values of $c_{\bf i}$: $c(N_2) = 0$, $c(O) = -0.16$, $c(He) = -0.79$,

b) "Mesospheric":

$$\Delta_{s\ell} \log \rho = \frac{\phi}{|\phi|} \operatorname{SP} \sin^2 \phi \tag{37}$$

$$S = 0.014 (z - 91) \exp \left[-0.0013 (z - 91)^2\right]$$
, (z in km) (38a)

$$P = \sin\left(2\pi \frac{t - t_0}{365} + 1.72\right)$$
, (t in days, $t_0 = Jan. 1$) (38b)

$$\Delta_{sf} T = -2.9 P(z - 102.5) \exp(-7.8 \times 10^{-5} |z - 102.5|^{2.7})$$
(39)

Semiannual variation

a) J71 model:

$$\Delta_{sa} \log \rho = f(z) g(t) \tag{40}$$

$$f(z) = \left[0.04 \left(\frac{z}{100}\right)^2 + 0.05\right] \exp\left(-0.25 \frac{z}{100}\right) , \qquad (z \text{ in km})$$
 (41)

$$g(t) = 0.0284 + 0.382 [1 + 0.467 \sin(2\pi\tau + 4.14)] \sin(4\pi\tau + 4.26)$$
 (42)

$$\tau = \Phi + 0.0954 \left\{ \left[\frac{1}{2} + \frac{1}{2} \sin \left(2\pi \Phi + 6.04 \right) \right]^{1.65} - \frac{1}{2} \right\}$$
 (44)

$$\Phi = (t - Jan. 1)/365$$
 (43)

b) Alternate model:

$$\Delta_{\text{sa}} \log \rho = f_1(z) g_1(t) + f_2(z) g_2(t)$$
 (45)

$$f_1(z) = 0.03 \tanh \left(0.6 \frac{z}{100} \right)$$
 (46a)

$$f_2(z) = \left[0.017 \left(\frac{z}{100}\right)^2 + 0.015\right] \exp\left(-0.25 \frac{z}{100}\right)$$
 (46b)

$$g_1(t) = \cos [2\pi (\Phi - 0.047)]$$
 (47a)

$$g_2(t) = \cos \left[4\pi \left(\Phi - 0.296\right)\right]$$
 (47b)

and the control of th

9. NUMERICAL EXAMPLE

Suppose we want to find the temperature, density, and composition for a point with the following coordinates:

Longitude = 45°W of Greenwich (= 315°E) , Latitude = 40°N , Height = 320 km ,

on May 4, 1974, at 14^h0^m UT (= MJD 42171.5833). For that instant, we find:

Sun's declination, δ_{\bigodot} = +15.96 , $\delta_{\bigodot}/\epsilon$ = +0.6808 , Local solar time, LST = $11^{h}3^{m}.3$, Hour angle of the sun, H = -14.18 , Fraction of tropical year, Φ = 0.338 , Geomagnetic latitude, Φ ' = 50.47 .

The 10.7-cm solar flux has to be evaluated at time $t-\Delta t$. With $\Delta t \approx 1$ day, we find $\overline{F}=87.6$, F=114; with these values, equation (20) gives $T_{1/2}=873.1$ K. Entering the models with this exospheric temperature and z=320 km, we find $\overline{M}=16.90$, for use in equation (26). From equations (24) to (27), we find the Θ_i 's appropriate for each constituent, with its corresponding number density:

Species	$\underline{\Theta}_{\mathbf{i}}$	$\frac{\log (n_i)}{0}$
$^{ m N}_2$	952.6	13.670
$o_{2}^{}$	950.8	12.224
0	963.9	14.587
Ar	948.2	9.765
He	996.8	12.719
H	939.3^*	11.265

 $⁼ T_0$, the "quiet" exospheric temperature.

We can now proceed to evaluate the geomagnetic effect. Corresponding to $\varphi'=50.^\circ47,$ equation (30) gives the time lag $\tau=0.18$ day = 4.3 hours. For $t-\tau=1974$ May 4.40, we find $K_p'=5_0$, which, introduced in equations (31a) and (31b), gives A=345 K, $\Delta_G T_\infty=122$ K. We now must compute the three components of the total "geomagnetic" variation Δ_G log n_i [equation (28)]. The quantity Δ_T log n_i is the change in log n_i as the exospheric temperature increases from its "quiet" value $T_0(\infty)=939.3$ K to $T_0(\infty)+\Delta_G T_\infty=1061$ K. For simplicity, we shall ignore equation (32) and the integrations it involves; for lower heights, this would not be justified. For Δ_H log n_i , we must use equations (33) and (34); for Δ_e log n_i , equation (35). We find

Species	$\frac{\Delta_{\mathrm{T}} \log n}{1}$	$\Delta_{\mathrm{H}} \frac{\log n}{1}$	$\frac{\Delta}{e} \frac{\log n}{1}$ i	$\frac{\Delta}{G} \frac{\log n}{1}$ i
${ m N_2}$	+0.267	0	+0.063	+0.330
o_2^{r}	+0.312	+0.080	+0.063	+0.455
o	+0.131	-0.374	+0.063	-0.180
Ar	+0.403	+0.237	+0.063	+0.703
He	+0.014	-0.487	+0.063	-0.410
H	-0.161	?	+0.063	[-0.098]

The effect of the seasonal-latitudinal variation is computed from equation (36):

Species	$\frac{\Delta_{\text{SL}} \log n}{i}$
${ t N}_2$. 0
o_2^-	0(?)
o	-0.070
Ar	0
Не	-0.346
H	(?)

The mesospheric seasonal-latitudinal variation is negligible at 320 km.

Finally, we can compute the effect of the semiannual variation from equations (40) to (44) or (45) to (47). Opting for the first set, we obtain $\Delta_{\rm Sa}$ log ρ = +0.037. Assembling all the various effects, we have

Species	$\frac{\log (n_i)}{0}$	$\Delta_{\mathbf{G}} \frac{\log n_{\mathbf{i}}}{\mathbf{i}}$	$\frac{\Delta_{\text{SL}} \log n}{1}$	$\frac{\Delta}{\sin n}$ i	Final log n
$^{ m N}_2$	13.670	+0.330	0	+0.037	14.037
o_2^-	12.224	+0.455	[0]	+0.037	12.716
0	14.587	-0.180	-0.070	+0.037	14.374
Ar	9.765	+0.703	0	+0.037	10.505
He	12.719	-0.410	-0.346	+0.037	12.000
H	11.265	[-0.098]	-	+0.037	[11.204]

The total density is given by $\rho = \sum M_i n_i / A$, where A is Avogadro's number, 6.02217 \times 10²⁶ (mks); we obtain $\rho = 1.164 \times 10^{-11}$, log $\rho = -10.934$.

. •

REFERENCES

- BLUM, P. W., and HARRIS, I.
 - 1973. On empirical models of the upper atmosphere in the polar regions. Planet. Space Sci., vol. 21, pp. 377-381.
- BRINTON, H. C., MAYR, H. G., and POTTER, W. E.
 - 1975. Winter bulge and diurnal variations in hydrogen inferred from AE-C composition measurements. Geophys. Res. Lett., vol. 2, pp. 389-392.
- CARRU, H., and WALDTEUFEL, P.
 - 1969. Étude par diffusion de Thomson des variations de la température exosphérique. Ann. de Géophys., vol. 25, pp. 485-494.

CIRA

- 1972. COSPAR International Reference Atmosphere 1972. Compiled by COSPAR Working Group IV, Akademie-Verlag, Berlin, 450 pp.
- COESA, Committee on Extension of the Standard Atmosphere
 - 1962. <u>U.S. Standard Atmosphere 1962.</u> U.S. Government Printing Office, Washington, D.C., 278 pp.
 - 1976. <u>U.S. Standard Atmosphere</u>, 1976. U.S. Government Printing Office, Washington, D.C., 227 pp.
- COOK, G. E.
- 1965. Satellite drag coefficients. Planet. Space Sci., vol. 13, pp. 929-946. HACHENBERG, O.
 - 1965. Radio frequency emissions of the sun in the centimeter wavelength range:

 The slowly varying sunspot component. In Solar System Radio Astronomy,
 ed. by J. Aarons, Plenum Press, New York, pp. 95-108.
- HARRISON, L. P.
 - 1951. Relation between geopotential and geometric height. In Smithsonian Meteorological Tables, 6th ed., U.S. Government Printing Office, Washington, D.C., pp. 217-219.
- HEDIN, A. E., MAYR, H. G., REBER, C. A., SPENCER, N. W., and CARIGNAN, G. R. 1974. Empirical model of global thermospheric temperature and composition based on data from the OGO 6 quadrupole mass spectrometer. Journ.

- JACCHIA, L. G.
 - 1965. Static diffusion models of the upper atmosphere with empirical temperature profiles. Smithsonian Contr. Astrophys., vol. 8, pp. 215-257.
 - 1970. New static models of the thermosphere and exosphere with empirical temperature profiles. Smithsonian Astrophys. Obs. Spec. Rep. No. 313, 87 pp.
 - 1971a. Revised static models of the thermosphere and exosphere with empirical temperature profiles. Smithsonian Astrophys. Obs. Spec. Rep. No. 332, 113 pp.
 - 1971b. The semiannual density variation in the heterosphere: A reappraisal.

 Presented at the 14th International COSPAR Meeting, Seattle, Washington,
 June.
 - 1973. Comments on the paper "On empirical models of the upper atmosphere in the polar regions." Planet. Space Sci., vol. 21, pp. 883-884.
 - 1974. Variations in thermospheric composition: A model based on mass spectrometer and satellite drag data. Journ. Geophys. Res., vol. 79, pp. 1923-1927.
- JACCHIA, L. G., CAMPBELL, I. G., and SLOWEY, J. W.
 - 1973. A study of the diurnal variation in the thermosphere as derived by satellite drag. Planet. Space Sci., vol. 21, pp. 1825-1834.
- JACCHIA, L. G., and SLOWEY, J. W.
 - 1973. A study of the variations in the thermosphere related to solar activity. In <u>Space Research XIII</u>, ed. by M. J. Rycroft and S. K. Runcorn, Akademie-Verlag, Berlin, pp. 343-348.
- JACCHIA, L. G., SLOWEY, J. W., and CAMPBELL, I. G.
 - 1969. A study of the semi-annual density variation in the upper atmosphere from 1958 to 1966, based on satellite drag analysis. Planet. Space Sci., vol. 17, pp. 49-60.
 - 1973. An analysis of the solar activity effects in the upper atmosphere. Planet. Space Sci., vol. 21, pp. 1835-1842.
- JACCHIA, L. G., SLOWEY, J. W., and VON ZAHN, U.
 - 1976. Latitudinal changes of composition in the disturbed thermosphere from ESRO 4 measurements. Journ. Geophys. Res., vol. 81, pp. 36-42.

- JACCHIA, L. G., SLOWEY, J. W., and VON ZAHN, U.
 - 1977a. Temperature, density, and composition in the disturbed thermosphere from ESRO 4 gas-analyzer measurements: A global model. Journ. Geophys. Res., vol. 82, pp. 684-688.
 - 1977b. Seasonal-latitudinal variations of composition from ESRO 4 gas analyzer measurements and satellite drag. In preparation.
- KING-HELE, D. G.
 - 1966. Semi-annual variation in upper-atmosphere density. Nature, vol. 210, p. 1032.
- MAUERSBERGER, K., ENGEBRETSON, M. J., KAYSER, D. C., and POTTER, W. E. 1976. Diurnal variation of atomic nitrogen. Journ. Geophys. Res., vol. 81, pp. 2413-2416.
- MAYR, H. G., HEDIN, A. E., REBER, C. A., and CARIGNAN, G. R.
 - 1974. Global characteristic in the diurnal variations of thermospheric temperature and composition. Journ. Geophys. Res., vol. 79, pp. 619-628.
- McCLURE, J. P.
 - 1969. Diurnal variation of neutral and charged particle temperatures in the equatorial F region. Journ. Geophys. Res., vol. 74, pp. 279-291.
 - 1971. Thermospheric temperature variations inferred from incoherent scatter observations. Journ. Geophys. Res., vol. 76, pp. 3106-3115.
- McILWAIN, C. E.
 - 1966. Magnetic coordinates. In <u>Radiation Trapped in the Earth's Magnetic Field</u>, ed. by B. M. McCormac, D. Reidel Publ. Co., Dordrecht, Holland, pp. 45-61.
- MINZNER, R. A., and RIPLEY, W. S.
 - 1956. The ARDC Model Atmosphere, 1956. AFCRC TN-56-204; ASTIA Document 110233, 202 pp.
- NEWTON, G. P., KASPRZAK, W. T., CURTIS, S. A., and PELZ, D. T.
 - 1975. Local time variation of equatorial thermospheric composition determined by the San Marco 3 Nace. Journ. Geophys. Res., vol. 80, pp. 2289-2299.
- NEWTON, G. P., PELZ, D. T., and VOLLAND, H.
 - 1969. Direct in situ measurements of wave propagation in the neutral thermosphere. Journ. Geophys. Res., vol. 74, pp. 183-196.

- PAUL, G., VOLLAND, H., and ROEMER, M.
 - 1974. A study of the time lag between the 27-day variations of thermospheric density and 10.7 cm solar radiation. In <u>Space Research XIV</u>, ed. by M. J. Rycroft and R. D. Reasenberg, Akademie-Verlag, Berlin, pp. 189-193.
- PHILBRICK, C. R., McISAAC, J. P., and FAUCHER, G. A.
 - 1976. Variations in the atmospheric composition and density during a magnetic storm. Presented at the 19th Plenary Meeting of COSPAR, Philadelphia, June.
- REBER, C. A., HEDIN, A. E., PELZ, D. T., POTTER, W. E., and BRACE, L. H. 1975. Phase and amplitude relationship of wave structure observed in the lower thermosphere. Journ. Geophys. Res., vol. 80, pp. 4576-4580.
- SALAH, J. E., and EVANS, J. V.
 - 1973. Measurements of thermospheric temperatures by incoherent scatter radar. In <u>Space Research XIII</u>, ed. by M. J. Rycroft and S. K. Runcorn, Akademie-Verlag, Berlin, pp. 267-286.
- TAEUSCH, D. R., and CARIGNAN, G. R.
 - 1972. Neutral composition in the thermosphere. Journ. Geophys. Res., vol. 77, pp. 4870-4876.
- THUILLIER, G., FALIN, J. L., and WACHTEL, C.
 - 1976. Experimental global model of the exospheric temperature based on measurements from the Fabry-Perot interferometer on board the OGO-6 satellite. Presented at the 19th Plenary Meeting of COSPAR, Philadelphia, June.
- VOLLAND, H., WULF-MATHIES, C., and PRIESTER, W.
 - 1972. On the semiannual variations of the thermospheric density. Journ. Atmos. Terr. Phys., vol. 34, pp. 1053-1063.
- WULF-MATHIES, C.
 - 1972. The latitudinal dependence of the semi-annual effect. In Space Research XII, ed. by S. A. Bowhill, L. D. Jaffe, and M. J. Rycroft, Akademie-Verlag, Berlin, pp. 815-819.

EXOSPHERIC TEMPERATURE = 500 K

LOG(DEN KG/M3)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100.683	222.032	112,699 112,895 112,967 113,095
DENSITY KG/M3	3,43E-06 2,40E-06 1,68E-06 1,17E-06 8,16E-07 4,01E-07 2,82E-07 1,99E-07	9,946-08 4,426-08 2,176-08 1,166-08 6,696-09 2,686-09 1,276-09 9,046-10	6.58E-10 2.03E-10 2.05E-10 1.25E-10 7.73E-11 7.88F-11 2.08E-11 1.39E-11		2.005=13 1.465=13 1.085=13 8.035=14 6.055=14
DENSITY SCALE HT KM	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	114.11 114.55 118.00 218.00 218.00 228.36 228.36 25.31 25.31 25.31	0000488700	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
MEAN MOL WT	28 99 10 10 10 10 10 10 10 10 10 10 10 10 10	24 25 26 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27	201 190 190 190 100 100 100 100 100 100 1	မရာနက္ကိုလ္လုပ္ေတြကိုလာတဲ့ လ	11.23 10.32 9.37 8.42 7.50
LOG (PRFSSURE NT/M2)	8 9 7 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	20178 20178 20179	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005	-7.132 -7.231 -7.322 -7.403
LOG (N	19.854 19.545 19.545 19.391 19.084 18.933 18.483 18.483	18,342 18,002 17,703 17,703 17,210 17,009 16,832 16,832 16,525	16,260 16,021 15,801 15,594 15,400 15,036 14,864 14,864 14,864	444 444 888 889 884 884 884 884	13.031 12.931 12.841 12.759
LOG (N (H) /M3)		12.646 12.595	12.553 12.443 12.443 12.409 12.336 12.337 12.337 12.337		12.180 12.171 12.161 12.152 12.143
LOG (N (HE) /M3)	14,573 14,619 14,264 14,109 19,955 13,955 13,777 13,752 13,752	13.666 13.666 13.659 13.659 13.659 13.398 13.398 13.273 13.273	13.186 13.136 13.089 13.065 13.002 12.918 12.878 12.838 12.838		12.380 12.343 12.306 12.270 12.233
LOG (N (A) /M3)	17.0824 17.0824 17.0826 17.0860 17.086 17.086 16.0852 16.0820 16.420	16.009 15.009 16.009 17.001 17.001 18.009 18.009 18.009 18.009 18.009 18.009 18.009 18.009 18.009 18.009 18.009	12.833 11.9867 11.9567 11.9552 110.444 10.344 9.950 9.559	8.74888.448888.448888.448888.448888.448888.448888.448888.448888.448888.448888.448888.448888.448888.448888.448888.448888.448888.4488888.4488888.44888888	
(N) (O) (N) (O)	17.390 17.547 17.646 17.687 17.668 17.668 17.606 17.500 17.500	17.383 17.383 17.303 16.834 16.641 16.671 16.788 16.180	15.984 15.8627 15.627 15.292 15.129 14.809 14.851	23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12.832 12.684 12.538 12.391 12.245
LOG(N(02)	19.0170 19.009 18.843 18.674 18.501 18.326 18.132 17.978 17.613	17.425 16.974 16.599 15.279 15.997 15.516 15.306 15.107	14.734 14.380 14.039 13.705 13.378 13.055 12.735 12.419 12.106	11. 485 11. 178 11. 178 10. 568 10. 568 9. 664 9. 664 9. 067 8. 770	8.474 8.180 7.886 7.594 7.302
LOG(N(N2)	19, 546 19, 5946 19, 5943 19, 128 118, 8944 118, 6744 118, 524	18,226 17,873 17,857 17,025 16,595 16,598 16,232 16,232	15.902 15.592 15.592 14.9999 14.112 11.6129 13.6129 13.6129 13.598	0 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	10,418 10,160 9,903 9,647 9,391
TEMP LC	188.0 188.1 188.3 188.8 189.7 191.2 193.6 197.2 202.4 202.4	218.5 247.7 280.3 314.0 347.3 347.3 347.3 416.8 430.2 440.5	4448.6 4668.8 474.8 474.3 482.9 487.9 489.7	0 W 4 W W W 4 V V V	497.8 498.1 498.2 498.4
F IGHT KM	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1110 125 125 125 125 146 156 156	160 170 180 200 210 220 230 240	2250 2250 2250 220 250 250	340 370 380 390 400

EXOSPHERIC TEMPERATURE = 500 K

LOG (DEN KG/M3)		114,0599 114,0599 114,0599 114,0599 114,0599 114,0599 114,0599	44444444444444444444444444444444444444	11155.222 11155.222 11155.3266 11155.3266 11155.3266 11155.3266	11111111111111111111111111111111111111
DENSITY KG/M3	80411864448 808100088 80810008 80810018 808110118 818118 818118 81818 81	22.20.40.40.40.40.40.40.40.40.40.40.40.40.40	11.2347 11.2347 11.2347 11.2347 11.2347 13.434	25.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.35E-16 2.35E-16 2.05E-16 1.75E-16 1.52E-16 1.16E-16 1.00E-17
DENSITY SCALE HT KM	0 4 4 8 9 8 6 8 4 6 9 6 9 6 9 6 9 9 9 9 9 9 9 9 9 9 9 9	179.61 190.37 2200.55 2200.49 230.67 241.17 252.02 263.26 24.89	286.83 3311.63 337.40 337.33 353.33 353.33 402.33 402.33	433.10 462.23 489.13 513.56 555.72 573.67 569.87 604.75	642.97 665.04 685.30 723.59 741.95 778.85 778.85 815.85
MEAN MOL WT	0.000000000000000000000000000000000000		6.000000000000000000000000000000000000	0.000000000000000000000000000000000000	000000000
LOG (PRFSSURE NT/M2)	177.6590 177.6590 177.6823 177.9918 178.9958 178.9958 178.9958	# 8 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18 951 19 95 142 19 95 142 19 95 142 19 95 319 19 95 316
LOG(N	12.566 12.566 12.338 12.338 12.288 12.263 12.164 12.132	12.0069 12.0069 12.0012 11.9985 11.9935 11.9935 11.8865 11.865	11.823 11.802 11.782 11.763 11.725 11.725 11.689	11.612 11.6512 11.6532 11.6493 11.6419 11.383 11.312	11.210 11.145 11.081 10.959 10.960 10.785 10.730
L0G(N(H) /M3)	12-124 12-124 12-088 12-070 12-052 12-034 12-016 11-999 11-981	111.947 111.9947 111.9912 111.896 111.8862 111.8865 111.8829 111.812	11.780 11.764 11.747 11.731 11.6684 11.6684 11.6684	11.599 11.554 11.524 11.487 11.415 11.310 11.310	111.210 111.144 11.081 10.958 10.859 10.842 10.730
LOG (N (HE) /M3)	12.160 12.018 12.017 11.945 11.874 11.874 11.664 11.595	11.9458 111.3323 111.255 111.0555 110.056 10.995 10.925	10.796 10.7396 10.668 10.668 10.541 10.3418 10.395 10.295	10.079 9.079 9.781 9.634 9.849 9.348 9.069 8.932	6.848 6.848 6.848 6.848 6.848
LOG (N (A) /M3)					
LOG(N(O)	11.0655 111.0667 111.095 110.0812 10.531 10.251 9.697 9.697	9.149 8.8149 8.607 8.339 9.072 7.5806 7.280 6.760	6.502 6.245		
LOG (N (02) /M3)	6.145 6.145				
TEMP 1 0G (N (N2)	8 8 7 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9) .			
TEMP .	44444444 00000000000000000000000000000	44444444 00000000000000000000000000000	444444444 0000000000000000000000000000	00000000000000000000000000000000000000	
HE I GHT KM	4444 W W W W W W W W W W W W W W W W W	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9	11050 11100 11200 1250 13300 1450 1500	1600 1700 1800 1800 2100 2200 2300 2400 2500

EXOSPHERIC TEMPERATURE = 550 K

LOG (DEN KG/M3)	111111111 0000000000000000000000000000	7.1.1.1.1.1.1.0.0.0.0.0.0.0.0.0.0.0.0.0.	0.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-111-028 -111-179 -111-6727 -111-6715 -112-0803 -12-165	-12,428 -12,557 -12,684 -12,808
DENSITY KG/M3	3.43E-06 1.68E-06 1.17E-06 8.16E-07 4.01E-07 2.82E-07 1.98E-07	40.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.40E-10 2.22E-10 2.55E-10 1.54E-10 6.34E-11 4.26E-11 4.26E-11 2.88E-11 1.99E-11	9.37E-12 6.62E-12 7.37E-12 2.37E-12 2.43E-12 1.28E-12 9.34E-13 6.85E-13 5.04E-13	3,73E-13 2,77E-13 2,07E-13 1,55E-13
DENSITY SCALE HT KM	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	5.08 112.92 13.96 15.06 15.06 16.08	1186 221-95 221-95 221-95 255-	288 299 209 209 200 200 200 200 200 200 200	88888 8888 9888 9888 9888 9888 9888 98
MEAN MEAN	28.91 28.91 28.85 28.65 28.55 28.55 28.21 27.79 27.79	22 23 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22.07 21.20 20.39 19.65 19.60 17.93 17.93 17.51 16.83	16.55 16.30 16.30 16.05 15.81 15.81 14.98 14.63 13.75	13.20 12.59 11.90 11.90 11.95
LOG (PRESSURE NT/M2)	1 1 2 3 4 5 3 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5	12.0173 12.052 12.052 13.016 13.016 13.016 13.017 13.017 13.053 13.053	11.3 869 14.4 869 14.4 869 14.6 861 14.8 861 15.2 985 15.2 985 15.2 985	.5.595 .5.738 .5.738 .6.016 .6.151 .6.5183 .6.506	-6.891 -5.999 -7.101 -7.197
LDG (N /F/3)	199.854 199.7450 199.391 199.391 199.083 189.782 188.782	18.341 17.405 17.448 17.222 17.6569 16.699 16.599	166.306 115.8079 115.870 115.870 115.870 115.870 116.830 114.833 114.833	14,533 14,247 14,247 14,109 13,640 13,585 13,462 13,344	13.231 13.123 13.020 12.924 12.835
LOG (N (H)		12,507	12.410 12.342 12.254 12.256 12.251 12.178 12.178 12.146 12.146	12.121 12.110 12.099 12.089 12.080 12.061 12.061 12.052 12.053	12.025 12.016 12.008 11.999 11.991
LOG (N (HE) /M3)	14.573 14.619 14.264 14.264 13.954 13.954 13.776 13.723 13.723	13.5663 13.585 13.585 13.4512 13.342 13.255 13.255 13.255 13.205	13.179 13.131 13.087 13.006 13.006 12.906 12.891 12.855 12.855	12.782 12.747 12.747 12.676 12.667 12.607 12.538 12.538 12.538	12,437 12,403 12,369 12,336 12,336
LOG (N(A) /M3)	17.6824 17.6824 17.8515 17.205 17.205 16.865 16.629 16.619	16.010 15.0010 15.0010 16.0010 16.0010 16.0010 16.0010 16.0010 16.0010 16.0010	12.0940 12.0532 11.00532 11.00532 11.00549 10.0649 10.088 9.931	9.225 8.8275 8.81827 7.88837 7.8833 6.816 6.816 6.139	
LOG (N (D)	17.340 17.547 17.646 17.687 17.689 17.668 17.668 17.698 17.498	17.380 17.199 17.809 16.831 16.671 16.296 16.296 16.194	1155.000 1155.0000 1155.000 1155.000 1155.000 1155.000 1155.000 1155.000 1155.0000 1155.000 1155.000 1155.000 1155.000 1155.000 1155.000 1155.0000 1155.000 1155.000 1155.000 1155.000 1155.000 1155.000 1155.0000 1155.000 1155.000 1155.000 1155.000 1155.000 1155.000 1155.0000 1155.000 1155.000 1155.000 1155.000 1155.000 1155.000 1155.000 1155.000 1155.000 1155.000 1155.000 1155.000 1155.000 1155.00	14.492 14.351 14.351 14.073 13.934 13.560 13.524 13.388	13,118 12,984 12,850 12,717 12,585
LOG (N (02) /M3)	19.170 19.009 18.843 18.673 18.500 18.326 18.132 17.977	17.424 16.975 16.993 16.293 16.018 15.774 15.555 15.354 15.166	14.815 14.686 114.169 113.862 113.560 112.972 112.682 112.9662	11.0830 11.5549 11.271 10.994 10.718 10.170 9.898 9.627	9 088 8 820 8 553 8 287 8 021
EMP LOG(N(N2) K /N3)	19.746 19.592 19.6434 19.128 18.824 18.824 18.573 18.522	18.224 17.284 17.284 17.284 17.284 16.625 16.446 16.280 16.280	15.940 115.680 116.8680 114.8608 114.8608 114.8608 113.864 113.864	13.351 13.105 12.6861 12.618 12.377 12.1377 11.659 11.422	10.950 10.715 10.481 10.248 10.016
TEMP L	188.1 188.1 188.1 188.3 188.9 191.6 194.2 196.2 204.0 211.8	2221 2521 2521 2521 2521 2521 2521 2521	484.0 499.5 500.6	00000000000000000000000000000000000000	547.2 547.5 547.7 548.0 548.1
HE1GHT KM	1002 1002 1002 1004 1004	1110 1120 1130 1130 1140 1150 1150	160 170 180 180 200 220 230 240 250	260 270 280 280 380 380 380 390 390 390	360 380 400 400

EXOSPHERIC TEMPERATURE = 550 K

L06 (DEN KG/M3)	11111111111111111111111111111111111111	11111111111111111111111111111111111111	444440000	11111111111111111111111111111111111111
DENSITY KG/M3	44444999999999999999999999999999999999	22.22.28.38.38.38.38.38.38.38.38.38.38.38.38.38		2.38E.16 2.06F.16 1.57E.16 1.38E.16 1.08E.16 1.08E.16 1.08E.17 7.61E.17
DENSITY SCALE HT KM	98 472.03 472.03 473.03 484.05 91.24.18 1124.52 1124.52 1124.52 1124.53 1124.53 1124.53	153.88 1177.05 1177.05 1186.75 2212.00 2212.01 2229.59		676.08 708.87 753.45 787.45 787.49 810.09 832.10 875.61 895.74
MEAN MOL MT	22222222222222222222222222222222222222	2.22 2.12 2.12 2.03 1.09 1.09 1.069 1.069		001111111111111111111111111111111111111
LOG (PRF SSURE NT/M2)	11.17.05.43.3.17.05.43.3.17.05.43.3.17.05.43.3.17.05.43.3.18.09.40.00.25.17	### ### ##############################	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
L0G(N /M3)	12.678 12.443 12.443 12.789 12.731 12.136 12.095	112.022 111.9988 111.9988 111.8997 111.8869 111.8143 111.792	11.745 11.745 11.772 11.681 11.661 11.664 11.6	11.145 11.085 11.026 10.970 10.914 10.861 10.757 10.757
LOG (N (H)	111.9974 111.9974 111.9940 111.9926 111.8991 111.8859 111.8859	11.812 11.797 11.781 11.786 11.786 11.785 11.705 11.690	0404000000	11.142 11.083 11.083 10.969 10.860 10.808 10.757 10.757
LOG(N(HE) /M3)	12.237 12.171 12.106 12.041 11.976 11.8912 11.785 11.723	111.598 111.598 111.6475 111.359 111.239 111.173		8.938 8.703 8.703 8.250 8.032 7.819 7.200 7.200
LDG (N (A)				
LOG(N(D)	12.321 12.321 11.7058 11.539 11.0281 10.771 10.267	99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00	7	
LOG (N (02) /M3)	7.493 6.969 6.448			
LOG (N (N2)	98897 9887 9887 9883 9483 9464 9464			
TEMP L	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00000000000000000000000000000000000000		
HE I GHT KM	4444 W W W W W W W W W W W W W W W W W	620 640 660 660 720 740 740 760	8820 8860 8860 9880 9920 9920 1000 1000 11150 11150 11150 11150 11150 11150 11150	1600 1700 1800 2000 2200 2400 2400 2500

EXOSPHERIC TEMPERATURE = 600 K

L0G(DEN KG/M3)	5.465 -5.620 -5.776	1 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -	17.005 17.356 17.658 17.658 18.920 18.357 18.527	-8.829 -8.963 -9.089	199327 199327 100104 11004 11005 11005 11005 11005 11005 11005 11005 11005 11005 11005 11005 11005 11005 11005 11005 11005 11005 11	-10.890 -11.032 -11.307 -11.307 -11.700 -11.953	-12,200 -12,321 -12,441 -12,558
DENSITY KG/M3	3,43E-06 2,40E-06 1,68E-06 1,17E-06	5.70E-07 4.00E-07 2.81E-07 1.98E-07	9.886-06 4.416-08 2.206-06 1.206-09 7.086-09 4.466-09 2.976-09	1,48E-09 1,09E-09 8,15E-10	2.916-10 1.836-10 1.196-10 7.876-11 5.956-11 2.556-11	1.296-11 9.286-12 6.746-12 3.686-12 1.696-12 1.996-12 1.496-12 1.116-12	6.31E-13 4.77E-13 3.63E-13 2.76E-13 2.12E-13
DENSITY SCALE HT KM	จเกเก	WWWWWW W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		9	200 200 200 200 200 200 200 200 200 200	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	35.64 36.10 36.59 37.14
MEAN MOL WT	യയയയ	28.52 28.36 28.21 28.02 27.79	24.00 24.00 24.00 24.00 24.00 24.00 24.00 25.00	5 2	21.51 20.75 20.04 19.40 18.82 18.32 17.49	16.87 16.84 16.38 16.38 16.16 15.95 15.73 15.73 15.25 14.98	14.31 13.90 13.44 12.92 12.35
LOG (PRESSURE NT/M2)	~ ∞ ∽ ⊸	11.1.4.4.5.1.0.4.4.5.1.0.4.5.0.1.5.0.1.5.0.1.5.0.4.5.0.4.5.0.1.5.0.4.5.0.0.4.5.0.4.5.0.4.5.0.4.5.0.4.5.0.4.5.0.4.5.0.4.5.0.4.5.0.4.5.0.4.0	12.445 12.676 12.676 13.0676 13.200 13.200	13.5583 13.6583 13.65963 13.65963	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	16.660 -6.769 -6.873 -6.974
L06 (N		19,236 19,083 18,932 18,781 18,632		16.586 16.460 16.342	15.926 15.926 15.941 15.967 15.967 15.243 15.091 14.944	14.662 14.527 14.394 14.137 14.137 14.012 13.769 13.769 13.536	13.424 13.316 13.711 13.110 13.014
LOG (N(H)				12,387 12,332 12,286	12.020 12.038 12.038 12.038 12.020 12.020 11.092	11.9980 11.9969 11.9958 11.9948 11.9939 11.9921 11.904	11.887 11.879 11.871 11.863
LUG (N(A) LOG (N(HE) /N3) /M3)		13,954 13,800 13,776 13,749 13,721	• • • • • • • •	7	13.126 13.084 13.007 13.007 12.971 12.900 12.866	12.799 12.767 12.734 12.670 12.670 12.606 12.575 12.575	12,481 12,450 12,420 12,389 12,358
LUG (N (A) /N3)	17.824 17.670 17.515 17.360	17.205 17.051 16.839 16.628 16.419	16.010 15.123 14.759 14.6538 14.659 13.895	13,439 13,230 13,029	12.646 12.279 11.923 11.576 11.6234 10.869 10.236 9.910	9.5866 8.9566 7.9966 7.9966 7.9986 7.983	6.443 6.136
LOG (N (0) /H3)	17.390 17.547 17.646 17.687	17.689 17.667 17.667 17.549 17.496	17.377 17.195 17.005 16.829 16.533 16.513	16,205 16,113 16,026	15.464 15.464 15.464 15.461 15.282 15.145 15.010 14.877	14.615 14.485 14.357 14.229 13.8975 13.600 13.600	13,352 13,229 13,107 12,984 12,863
L06 (N (02) /M3)	დდიდ	18,500 18,326 18,152 17,976 17,796	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	NN 4	14, 571 13, 709 13, 734 13, 64 12, 697 12, 633	12. 11. 854 11. 5598 11. 090 10. 583 10. 088 9. 840	9.593 9.347 9.102 8.858 8.615
TEMP LOG(N(R2) k /M3)	9.74 9.59 9.43 9.28	19,127 18,973 18,823 18,672 18,521	6667778 66859677 66859677	6.31 6.16 6.02	15,751 15,751 14,993 14,753 14,753 14,2816 14,050	13.593 13.367 13.143 12.920 12.698 12.477 12.257 12.038	11.387 11.172 10.958 10.744 10.531
TEMP L	8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	190.1 191.9 194.8 199.2 205.4 213.9	22 20 40 40 41 71	90.	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5847 5897 5908 5908 5992 5993 595 595 1	596.5 596.9 597.2 597.4
HF 1641 KM	9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	102 102 104 106		150 155 160	170 180 190 200 210 220 230 240	260 270 280 280 310 320 340 350	360 370 380 390 400

HE I GHT KM	TEMP K	LOG (N (N2) /M3)	LOG(N(O2) /M3)	LOG(N(O) /M3)	LOG(N(A) /M3)	LOG (N (HE) /M3)	LOG(N(H) /M3)	LOG (N /M3)	LOG (PRESSURE NT/M2)	MEAN MOL WT	DENSITY SCALE HT KM	DENSITY KG/M3	LOG(DEN KG/M3)
420	598.1	10.107	8.131	12,620		12.298	11.840	12.836	-7.247	11.04	39.26	1.26E-13	-12.900
440	598.4	9.686	7.650	12,380		12.237	11.825	12.681	-7.402	9.61	41.34	7.65E-14	-13,116
460	598.6		7,172	12,141		12.178	11.809	12.548	-7.534	8.16	44.25	4.79E-14	-13.320
480	598.8		6.697	11,903		12.118	11.794	12.437	-7.646	6.84	48.34	3.11E-14	-13.508
500	599.0		6,225	11,667		12.059	11.779	12.345	-7.738	5.71	54.01	2.10E-14	-13.678
520	599.1		- •	11.433		12,000	11.764	12.768	-7.815	4.82	61.66	1.48E-14	-13.829
540	599.2			11,200	•	11.942	11.750	12.203	-7.880	4.14	71.56	1.10E-14	-13.960
560	599.3			10,968		11.884	11.735	12,147	-7.936	3.64	83.76	8.46E-15	-14.072
580	599.4			10.737		11.826	11.720	12,097	-7.985	3.27	97.86	6.79E-15	-14,168
600	599.5			10,508		11.769	11.706	12.052	-8.030	3.00	113.10	5.61E-15	-14.251
		_		-		-		_		_	-		
620	599.5			10,281		11.712	11.692	12.011	-8.071	2.79	128.47	4.75E-15	-14.323
640	599.6			10,054		11.655	11.677	11.973	-8.109	2.63	143.10	4.10E-15	-14.387
660	599.6			9.829		11.599	11.663	11.937	-8.145	2.50	156.39	3.59E-15	-14.445
680	599.7			9,606		11.543	11.649	11.902	-8.180	2.39	168.14	3.17E-15	-14.498
700	599.7			9.383		11.487	11.635	11.870	-8.212	2.30	178.44	2.83E-15	-14.549
720	599.7			9.162		11.432	11.621	11.839	-8.243	2.21	187.55	2.54E-15	-14.596
740	599.8			8.942		11.377	11.607	11.809	-8.273	2.14	195.75	2.28E-15	-14.641
760	599.8			8,723		11.322	11.593	11.780	-8.302	2.07	203.36	2.07E-15	-14.685
780	599.8			8,506		11.268	11.580	11.752	-8.330	2.00	210.63	1.88E-15	-14.727
800	599.8			8,290		11.214	11.566	11.726	-8.356	1.93	217.82	1.71E-15	-14.767
820	599.8			8,075		11.160	11.552	11.700	-8.382	1.87	224.95	1.56E-15	-14.807
840	599.8			7.861	•	11,107	11.539	11.676	-8.406	1.82	232.21	1.43E-15	-14.845
860	599.9			7.648		11.053	11.526	11,652	-8.430	1.76	239.70	1.31E-15	-14.881
880	599.9			7.437		11,000	11.512	11,629	-8.453	1.71	247.46	1.21E-15	-14.917
900	599.9			7,227		10.948	11.499	11.607	-8.475	1.67	255.56	1.12E-15	-14.952
920	599.9			7,018		10.896	11.486	11.585	-8.497	1.62	264.02	1.04E-15	-14.985
940	599.9			6,810		10.844	11.473	11.564	-8.518	1.58	272.85	9.61E-16	-15.017
960	599.9			6,603		10.792	11.460	11.544	-8.538	1.54	282.09	8.94E-16	-15.049
980	599.9			6.397		10,740	11.447	11,525	-8.557	1.50	291.73	8.34E-16	-15.079
1000	599.9			6,193		10.689	11.434	11.506	-8.576	1.46	301.77	7.79E-16	-15,108
1050	599.9					10.562	11.402	11.461	-8.621	1.39	328.57	6.65E-16	-15.177
1100	599.9					10.437	11.370	11.418	-8.664	1.32	357.71	5.75E-16	-15.241
1150	599.9					10.314	11.339	11.378	-8.703	1.27	388.81	5.03E-16	-15,299
1200	600.0					10,192	11.309	11.341	-8.741	1.22	421.32	4.44E-16	-15.352
1250	600.0					10,072	11.278	11,305	-8.777	1.18	454.84	3.96E-16	-15,402
1300	600.0					9.954	11.249	11.270	-8.812	1.15	488.72	3.56E-16	-15.448
1350	600.0					9.837	11.219	11.237	-8.845	1.13	522.36	3.23E-16	-15.491
1400	600.0					9.721	11.190	11.204	-8.877	1.11	555.25	2.94E-16	-15.531
1450	600.0					9.607	11.161	11.173	-8.909	1.09	587.07	2.70E-16	-15.569
1500	600.0					9.495	11.133	11,143	-8.939	1.08	617.46	2.48E-16	-15.605
									-04,5,				
1600	600.0					9.274	11.077	11.084	-8,998	1.05	673.05	2.12E-16	-15.673
1700	600.0					9.058	11.023	11.028	-9.054	1.04	722.05	1.84E-16	-15.735
1800	600.0					8.848	10.970	10.973	-9.108	1.03	764.67	1.61E-16	-15.793
1900	600.0					8.643	10.918	10.921	-9.161	1.02	802.27	1.42E-16	-15.849
2000	600.0					8.443	10.868	10.870	-9.212	1.02	835.80	1.25E-16	-15,902
2100	600.0					8.248	10.819	10.820	-9.262	1.02	866.06	1.11E-16	-15.953
2200	600.0					8.057	10.771	10.772	-9.310	1.01	894.31	9.95E-17	-16.002
2300	600.0					7.870	10.724	10.724	-9.357	1.01	920.97	8.91E-17	-16.050
2400	600.0					7.688	10.678	10.678	-9.403	1.01	946.23	8.01E-17	-16.097
2500	600.0					7.510	10.633	10.633	-9.448	1.01	971.08	7.21E-17	-16.142

FXOSPHERIC TEMPERATURE = 650 K

HE I GHT	K TEMP	LOG(N(N2) /M3)	LOG(N(02) /M3)	LOG(N(O) /M3)	LOG(N(A) /M3)	LOG(N(HE) /M3)	LOG (N(H) /M3)	LOG(N /M3)	LOG (PRESSURE NT/M2)		DENSITY SCALE HT KM	DENSITY KG/M3	LOG(DEN KG/M3)
90	188.0	19.746	19,170	17,390	17.824	14.573		19.854	732	28.91	5,63	3.43E-06	£ //E
92	188.1	19.592	19,009	17,547	17,669	14.418		19.700	886	28.85	5.59	2.40E-06	-5.465 -5.620
94	188.4	19.437	18.843	17.646	17.515	14.264		19.545	-1.040	28.76	5.56	1.68E-06	-5.776
96	189.0		18.673	17.686	17.360	14.109		19.390	-1.193	28.65	5.54	1.17E-06	-5.932
98	190.2	19.127	18.500	17.689	17,205	13.954		19.236	-1.345	28.52	5.56	8.15E-07	-6.089
100	192.2		18.325	17,667	17,051	13.800		19.082	-1.494	28.36	5.65	5.69E-07	~6.245
102	195.3		18.152	17.604	16.839	13,775		18.931	-1.638	28.21	5.65	4.00E-07	-6.398
104	200.0		17.975	17.548	16.628	13.748		18.781	-1.778	28.02	5.67	2.81E-07	-6.552
106	206.7		17.795	17.495	16.419	13.720		18.631	-1-914	27.79	5.69	1.97E-07	-6.705
108	215.8	18.370	17.611	17.437	16.212	13.690		18.483	-2.043	27.53	5.74	1.39E-07	6.857
110	227.6	18.222	17.423	17.374	16.011	10							. •
115	265.5	17.872	16.978	17.191	15.541	13.657		18.338	-2.165	27.25	5.87	9.85E-08	-7.006
120	307.7		16,616	17.002	15,132	13.576		18.000	-2.436	26.57	6.69	4.41E-08	-7.356
125	351.4	17.299	16.314	16,827	14.775	13.501		17.709	-2.663	26.01	7.84	2.21E-08	-7.656
130	395.0	17.063	16.051	16,671	14.460	13.436 13.378		17.458	-2.856	25.51	8.99	1.22E-08	-7.915
135	434.7	16.855	15.820	16.534	14.182	13.328		17.241	-3.023	25.05	10.33	7.24E-09	-8.140
140	468.5	16,671	15,613	16,415	13.933	13.286		17.052	-3.170	24.61	11.83	4.61E-09	-8.337
145	496.2	16.504	15,426	16.309	13.705	13.250		16.887 16.740	-3.302	24.18	13.36	3.09E-09	-8,509
150	518.4	16.350	15.253	16.213	13.494	13.219	12,279	16.608	-3.424	23.76	14.82	2.17E-09	-8.664
155	536.4	16.205	15.090	16,124	13.294	13,192	12.224	16.486	≈3.537 ≈3.645	23.35	16.16	1.57E-09	-8.804
		-						104480	-30047	22.95	17.37	1.17E-09	-8,933
160	551.0	16.068	14.935	16.040	13.103	13.166	12.177	16.372	-3.747	22.55	18.45	8.82E-10	-9.054
170	573.0	15.809	14.641	15.885	12.740	13.121	12.102	16.163	-3.938	21.78	20.34	5.27E-10	-9.278
180 190	588.7	15.563	14.362	15.740	12.395	13,081	12.047	15.973	-4.117	21.06	21.97	3.28E-10	-9.484
200	600.3 609.1	15.327	14.093	15.601	12.062	13.043	12.005	15.796	-4.286	20.38	23.46	2.11E-10	-9.675
210	616.0	15.097 14.872	13.832	15.467	11.737	13.007	11.964	15.630	-4.446	19.75	24.86	1.40E-10	-9.855
220	621.5	14.652	13.576	15.337	11.419	12.973	11.937	15.472	-4. 598	19.18	26.17	9.45E-11	-10.025
230	626.0	14.434	13.324 13.076	15.209	11.106	12.939	11.915	15.322	- 4.745	18.67	27.43	6.50E-11	-10.187
240	629.6	14.219	12.831	15.083 14.960	10.796	12.907	11.896	15.177	-4.886	18.22	28.62	4.55E-11	-10.342
250	632.5	14.006	12.588	14,837	10.491 10.188	12.875	11.880	15.038	-5.023	17.83	29.75	3.23E-11	-10.491
	03243		12,000	14,637	10.100	12.843	11.866	14.903	-5.156	17.48	30.81	2.32E-11	-10.634
260	635.0	13.795	12,347	14,716	9.888	12.812	11.854	14.772	-5.285	17.18	31.79	1.69E-11	-10.773
270	637.0	13.586	12.108	14.596	9.590	12.782		14.644	-5.412	16.91		1.24E-11	-10.907
280	638.7	13.378	11.871	14.477	9.294	12.752		14.519	-5.535	16,67		9.15E-12	-11.039
290	640.1	13.171	11.635	14.358	9.000	12.722		14.397	-5.657	16.45		6.81E-12	-11.167
300	641.3	12.966	11.401	14.241	8.708	12.692	11.813	14.277	-5.776	16.24		5.10E-12	-11.292
310	642.4	12,762	11.168	14.124	8.417	12.662	11.805	14.159	-5.894	16.05		3.84E-12	-11.416
320	643.2	12.559	10.936	14.007	8.127	12.633	11.796	14.043	-6.009	15.85		2.90E-12	-11.537
330	644.0	12.356	10,705	13.892	7.839			13.929	-6.122	15.65		2.21E-12	-11,657
340 350	644.7	12.155	10.475	13.776	7.552			13.817	-6.234	15,44	37.08	1.68E-12	-11.774
350	645.2	11.954	10.246	13,662	7.266	17.546	11.772	13.707	-6.344	15.21		1.29E-12	-11.891
360	645.7	11.755	10.017	13.547	6.981	12.517	11.764	13.599	-6.451	14 04	27 08	0 675 10	13.004
370	646.1	11,556	9.790	13.434	6.698			13.494	~6.471	14.96 14.68		9.87E-13	-12.006
380	646.5	11.357	9.564	13,320	6,415			13.391	#6.659	14.36		7.59E-13 5.86E-13	-12.119
390	646.8	11.160	9.338	13.207	6.134			13.291	-6.759	14.01		4.54E-13	-12.232 -12.343
400	647.1	10,963	9,113	13.095				13,193	-6.856	13,60		3.53E-13	-12.343 -12.453
							•				- 7500	~	マルヒュマンフ

EXOSPHERIC TEMPERATURE = 650 K

LOG (DEN KG/M3)	-12.668 -12.876 -13.077 -13.268	-13.612 -13.762 -13.895 -14.013	11111111111111111111111111111111111111	$\frac{1}{2}$	11111111111111111111111111111111111111
DENSITY KG/M3	2.15E-13 1.33E-13 8.38E-14 5.40E-14		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	11.23.568 22.33.568 23.33.568 24.358 25.33.568 26.33.568 26.33.568 27.	1.97E-16 1.90E-16 1.036E-16 1.036E-16 1.036E-16 1.036E-16 1.036E-16 1.036E-17 1.036E-17
DENSITY SCALE HT KM	400.94 42.41 44.31 46.31 50.87	20000	105.04 119.55 134.12 148.10 160.91 182.35 191.28 191.28 199.17	22112 22112 22122 22122 22124	629.77 694.34 753.41 807.01 854.87 897.50 936.33 971.90 1004.73
MEAN MOL WT	12.66 11.54 10.29 8.99	4 4 4 6 6 1 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8889999999999999999999999999999999999	22222222222222222222222222222222222222	111111111111111111111111111111111111111
LGG (PRFSSURE NT/M2)	-7.039 -7.207 -7.358 -7.490	~~~~~	.8 .016 .8 .016 .8 .101 .8 .139 .8 .176 .8 .210 .8 .243 .8 .275 .8 .335	### ### ### ### #### #### ############	.90.071 .90.071 .90.071 .90.123 .90.173 .90.267 .90.395 .90.396
L0G(N	13.010 12.841 12.690 12.558	12.347 12.265 12.194 12.133	12.031 11.987 11.996 11.908 11.872 11.8837 11.772 11.772	0.000 0.000	111.030 10.976 10.976 10.874 10.874 10.780 10.795 10.691
LOG (N (H)	11.720 11.706 11.691 11.677	11.650 11.636 11.623 11.609	11.583 111.556 111.556 111.553 111.517 111.505 111.479	11. 4454 11. 4454 11. 4424 11. 417 11. 405 11. 380 11. 380 11. 380 11. 380 11. 380 11. 250 11. 220 11. 220 11. 11. 11. 11. 11. 11. 11. 11. 11. 11.	111.015 10.965 10.965 10.869 10.777 10.732 10.669
LOG (N (HE) /M3)	70000	12.073 12.019 11.965 11.912	11.807 11.754 11.754 11.651 11.599 11.548 11.497 11.347	11,297 111,248 111,199 111,101 11,005 11,005 11,005 11,005 10,957 10,957 10,957 10,293 10,293 10,293 10,293 10,293 10,184 10,006 9,969	9 9 9 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9
LOG(N(A)					
LOG(N(O)	2 8 9 2 5 8 4 4 5 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	11.559 11.345 11.132 10.921	10.711 10.502 10.294 10.087 9.882 9.678 9.475 9.273	8 8 8 6 7 7 7 8 8 8 8 8 7 7 7 8 8 8 8 8	
LOG (N (O2)	8.666 8.222 7.781 7.342 6.906	6.473			
EMP LOG(N(N2) 1 K /M3)	18 18 19 14 10	8,652 8,275 7,900 7,528 7,158	6,790 6,424 6,060		
TEMP L	4 4 8 4 4 4 8 4 4 8 8 4 8 8 8 8 8 8 8 8	6448 6449 6449 6449 6449 6449 6449	44444444444444444444444444444444444444	4444444444 000000000000000000000000000	44444444444444444444444444444444444444
HE I GHT KM	0 4 4 8 8 0	525 540 580 600 600	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8820 8860 9860 9900 9900 1000 1100 11200 1200 1350 1450	1600 1700 1900 2000 2100 2300 2400 2500

EXOSPHERIC TEMPERATURE =

LOG (DEN KG/M3)	1111	11111 6666 8766 8766 8766 8766 8766 8766	1111111 0000 0000 0000 0000 0000 0000	18.782 18.908 19.026 19.241	N Q Q - 4 Q Q M	10.672 10.800 10.800 11.047 111.166 11.397 11.510	-11.839 -11.946 -12.052 -12.157
DENSITY KG/M3		8.15E.07 5.69E.07 3.99E.07 2.80E.07 1.99E.07	2.208 2.226 3.226 4.3236 4.336 5.206	tem tea	2.39E-10 1.61E-10 1.10E-10 5.49E-11 2.89E-11		1.45E.12 1.13E.12 8.87E.13 6.97E.13
DENSITY SCALE HT KM		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	5.87 7.92 7.92 10.92 112.50 113.63		24,000	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	40.32 40.78 41.23 42.14
MEAN MOL WI	0.00 - 01	28.52 28.36 28.21 28.21 27.79 27.53	22222222222222222222222222222222222222	a	20.67 20.03 19.03 18.53 18.55 18.55 18.15	11.00	15.39 15.18 14.94 14.68
LOG (PRESSURE NT/M2)	1 1 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-1,345 -1,494 -1,638 -1,777 -1,912	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13 2600 13 600 13 600 14 608	164.508 144.508 144.508 144.648 144.782 15.0912	15.160 15.280 15.280 15.893 15.655 15.655 15.655 15.655 16.058	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
L0G(N /M3)	7 C C C C C C C C C C C C C C C C C C C	19.236 19.082 18.931 18.780 18.630	40000	62 50 39 19	15.8888 15.8888 15.8888 15.2888 15.751 15.051	14.866 14.745 14.8526 14.9397 14.9397 14.175 13.9661	13.753 13.652 13.553 13.456 13.451
LOG (N (H) /M3)					111.901 111.857 111.805 111.785 111.769	111.741 111.730 111.730 111.709 111.693 111.668	11.653 11.646 11.639 11.632 11.625
LÓĞ (N (HE) /M3)	126	13,954 13,799 13,774 13,748 13,719	13,655 13,672 13,697 13,649 13,372 13,322 13,280		13,040 13,006 12,973 12,941 12,880 12,851	12,822 12,793 12,765 12,703 12,682 12,682 12,654 12,657 12,657	12.547 12.520 12.494 12.467 12.441
LUG (N(A) /M3)	17.824 17.669 17.515	17.205 17.050 16.839 16.628 16.418	156.001 156.00	mm mount	12.179 11.873 11.574 11.281 10.992 10.707	10.144 9.867 9.867 9.891 9.0317 9.0317 8.505 8.505 7.970	7,440 7,176 6,913 6,652 6,391
LGG (N (O)	17.390 17.547 17.646 17.686	17.688 17.667 17.603 17.547 17.493	17.371 17.187 16.999 16.825 16.570 16.535 16.18	24 00L	15,631 15,505 15,382 15,262 15,144 15,028 14,913	14.688 14.688 14.577 14.3467 14.3467 14.248 14.032 13.925	13,712 13,606 13,501 13,396 13,291
L06 (%(02)	თითთ	18,500 18,325 18,151 17,975 17,795	17,4422 16,978 16,978 16,322 16,064 15,838 15,636	nn 444	134, 181 134, 935 134, 6935 134, 6935 12, 9938 12, 9938	12.546 12.324 12.324 11.683 11.665 11.665 11.232 11.232 10.803	10,378 10,167 9,957 9,747 9,538
TEMP LUG(N(M2) H K /M3)	9.59	19, 127 18, 973 18, 822 18, 671 18, 519 18, 369	18, 221 17, 872 17, 569 17, 305 17, 073 16, 869 16, 589	6.37 6.23 6.10 5.85 5.85	15,400 15,184 14,973 14,562 14,562 14,361	13,966 13,770 13,577 13,194 13,003 12,626 12,626 12,639	12.066 11.882 11.697 11.514
TEMP L(2 20 20 CO	192.5 192.5 195.8 200.7 207.9	230.1 270.4 315.3 361.7 468.2 451.0 488.1	2 d m c c	650.8 659.1 6659.1 671.0 675.3	681.8 686.3 6886.3 6886.1 691.8 692.8 692.8	694 695 695 8 696 696 7
KF1GHT KP	90 94 96	98 100 102 104 106	1110 1120 1120 1120 1120 140	150 155 160 170 180	200 200 220 230 240 250	260 270 280 280 390 390 390 390	360 370 380 400

EXOSPHERIC TEMPERATURE = 700 K

LOG (DEN' KG/M3)	112.664 113.6664 113.66666666666666666666666666666666666	11111111111111111111111111111111111111	4444444	11111111111111111111111111111111111111
DENSITY KG/M3	11.22.00.00.00.00.00.00.00.00.00.00.00.00.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22.22.22.22.22.22.22.22.22.22.22.22.22.	1.93E 1.693E 1.693E 1.640E 1.23E 1.628E 1.668E 1.668E 1.768E 1.768E 1.768E 1.768E
DENSITY SCALE HT KM	4443 4443 44443 4444 4444 5444 5444 544	87.54 99.43 112.63 126.58 140.64 156.75 178.10 188.15	204, 86 22111.885 2224.885 2224.833 2225.833 2225.833 2225.834 2225.834 2225.834 2226.834 222	562,35 632,35 702,63 770,02 891,23 891,23 944,64 944,64 1037,88
MEAN MOL WT	11111 2111 211	44666666666666666666666666666666666666	00000000000000000000000000000000000000	00100000
LOG (PRFSSURE NT/M2)	**************************************	1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOG (N	13.178 112.867 112.867 112.472 112.458 112.959 112.134	12.027 12.025 11.925 11.896 11.886 11.858 11.782		10.985 10.985 10.885 10.786 10.741 10.657 10.657
LOG (N (H)	11.598 11.598 11.598 11.594 11.593 11.593 11.508 11.508	111.6483 111.6474 111.6447 111.6447 111.6447 111.6423 111.3899	111, 364 111, 341 111, 341 111, 341 111, 341 111, 341 111, 241 111, 241 111	10,956 10,910 10,865 10,82 10,777 10,735 10,694 10,614 10,576
LOG (N (HE) /M3)	12,389 12,286 12,286 12,235 12,184 12,034 11,984 11,984	11.886 111.790 111.742 111.694 111.694 111.552 111.552	111 413 111,367 111,227 111,231 111,231 111,003 111,003 111,000 111,00	9 9 7 9 6 1 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
LOG (N (A) /M3)				
LOG (N (O)	13.083 12.672 12.672 12.266 12.266 11.8664 11.666 11.666	11.0077 10.883 10.690 10.498 10.307 10.118 9.929 9.755	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
LOG(N(02)	9.123 8.3710 8.3710 7.6893 7.6898 7.688 6.686			
LOG (N (N2)	10.967 10.267 10.267 9.899 9.536 9.536 9.848 8.834 8.834 7.796	7.454 7.115 6.777 6.441 6.107		
TEMP LO	6998 6996 6998 6998 6998 6998 6998 6998	66999999999999999999999999999999999999		7000 7000 7000 7000 7000 7000 7000 700
HE I GHT KM	444 w w w w w w o o o o o o o o o o o o	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8820 8840 8860 9880 990 990 1000 1100 1150 1150 1150 1150	1600 1700 1800 1900 2000 2200 2300 2400 2500

EXOSPHERIC TEMPERATURE = 800 K

LOG (DEN KG/M3)	4466	111111111111111111111111111111111111111	17,000 17,000 17,005 17,005 18,108 18,306 18,471	-8.868 -8.868	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 6 51	110.054 110.054 110.055 111.065 111.169	-11.568 -11.665 -11.760 -11.854
DENSITY KG/M3	11 11 11 11 11 11	5.68E-07 2.79E-07 1.96E-07	4.70E-08 2.23E-08 1.25E-08 1.25E-09 4.95E-09 3.98E-09 3.38E-09	35	1.056.09 6.566.10 2.906.10 2.016.10 1.426.10	7.45E-11 5.51E-11 4.12E-11 3.11E-11	2.575.11 1.085.11 1.085.11 1.065.11 8.616.12 6.775.12 7.255.12 3.865.12	2.70E-12 2.16E-12 1.74E-12 1.40E-12 1.13E-12
DENSITY SCALE HT KM	N N N N N N N N N N N N N N N N N N N	1000000 10000 144000	5.88 6.78 8.05 9.32 10.78 12.39 15.06	F- 80	22222222222222222222222222222222222222		4450 4450 4450 4450 4450 4450 4450 4450	444 45.37 45.91 46.41
WEAN MOL WT		28 21 28 21 28 02 27 79	27 26 26 26 26 26 26 26 27 27 24 24 24 24 26 26 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27	23,39	23.05 22.40 21.77 21.17 20.61 20.08	19.14 18.73 18.36	117.45 117.45 116.72 116.73 116.73 116.73	15.95 15.79 15.63 15.47
LOG (PRFSSURE N1/M2)		11.493 -11.493 -11.776 -1.909	ところうく をきき	52	4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8 4 5 5	15.006 15.006 15.006 15.006 15.006 15.006 15.006 15.006 15.006	-8.952 -6.044 -6.134 -6.223
LOGIN	8 L L L L	19.082 18.930 18.779 18.629	18.335 17.998 17.713 17.470 17.260 17.079 16.921	16.656	16.437 16.246 16.074 15.916 15.468 15.629	244	14.900 14.799 14.591 14.591 14.299 14.197	14,009 13,917 13,826 13,736
L0G(N(H)					11,910 11,830 11,769 11,672 11,674		11.524 11.524 11.505 11.488 11.488 11.473	11.459 11.452 11.446 11.439
LOG (N (HE) /M3)	14.573 14.418 14.264 14.108	113.77.09.113.77.09.113.77.79.09.113.77.79.09.113.77.79.09.113.77.79.09.113.77.79.09.113.77.79.79.113.77.79.113.77.79.113.77.79.113.77.79.113.77.79.113.77.79.113.77.79.113.77.79.113.77.79.113.77.79.113.77.79.113.77.79.113.77.79.113.77.79.79.79.79.79.79.79.79.79.79.79.79.	113.651 113.6551 113.6555 113.6489 113.633 113	20	13,149 13,106 13,067 13,033 13,001 12,971	2 2 8 8 1 2 1 3 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	12,809 12,784 12,734 12,734 12,686 12,682 12,682	12.591 12.567 12.544 12.521 12.698
LDG (N(A)	17.824 17.669 17.515 17.359	17.050 16.838 16.627 16.418 16.212	16,012 15,549 15,811 14,811 14,213 14,251 14,019	ויז ניז	13.00 12.00 12.00 12.00 11.00		10.310 10.067 9.8826 9.8826 9.112 8.877 8.642	8.177 7.946 7.716 7.486 7.258
LOG(N(0)	ww.000	17.666 17.666 17.546 17.491 17.432	17,367 17,182 16,994 16,821 16,821 16,537 16,537	22 14	15.067 15.067 15.0797 15.676 15.561 15.450	4 95 95 95 95 95 95 95 95 95 95 95 95 95	14.832 14.534 14.540 14.540 14.349 14.254 14.160	13.973 13.881 13.788 13.696 13.696
L06 (N (02)	19.170 19.009 18.843 18.673	18,324 18,150 17,974 17,793	17,421 16,980 16,627 16,336 16,886 15,867 15,673	15,339	14.0052 14.050 14.050 14.050 13.8888 13.6888	13.466 13.263 13.062 12.864	12.667 12.473 12.087 12.087 11.897 11.518 11.518 11.331	10.958 10.772 10.588 10.404 10.221
TEMP LOG(N(N2)	7 6 6 7 6 6 7 6 6 7 6 6 7 6 7 6 7 6 7 6	19,12,12,18,972 18,821 18,670 18,518	10.21.00 17.51.00 17.51.00 17.51.00 17.60 16.80 16.71.00 16.56 16.56	4.1.28	16.162 15.932 15.320 15.320 15.320 15.131	444 4·	14.069 113.069 113.069 113.069 113.069 112.068 112.068	12.567 12.405 12.243 12.082 11.922
TEMP L K	8 8 8 8 8	192.9 196.6 202.1 210.0	233 279 279 328 328 473 522 532 539 539	91.	639°1 673°3 698°3 717°1 731°7 743°1	10000	778.1 781.0 783.4 785.4 787.1 789.9 791.0	792.8 793.5 794.1 794.7
HE I GHT KM	0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	100 100 104 106 108	110 120 120 130 140 140	N W	160 170 180 200 210	im arm ar	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	350 370 380 390 400

	_		_										
HE I GHT	TEMP I	LOG (N (N2) /M3)	LOG(N(O2) /M3)	LOG(N(O) /M3)	LOG(N(A) /M3)	LOG(N(HE) /M3)	LOG(N(H) /M3)	LOG(N /M3)	LOG (PRFSSURE NT/M2)		DENSITY SCALE HT KM	DENSITY KG/M3	LOG(DEN
420	796.0	11,603	9.857	13,422	6.804	12,452	11.421	13,476	-6.483	14.90	47.84	7.41E-13	-12,130
440	796.6	11.287	9.496	13,241	6.352	12.407	11.409	13.310	-6.648	14.43	48.80	4.90E-13	-12.310
460	797.1	10.972		13.062	0,072	12.362	11.397	13.151	-6.807	13.87	49.81	3.26E-13	-12.486
480	797.6	10.660	8.780	12.883		12.317	11.385	13,000	-6.958	13.20	50.94	2.19E-13	-12,659
500	797.9	10.350	8.425	12.706		12.273	11.374	12.858	-7.100	12.43	52.28	1.49E-13	-12.827
520	798.2	10.041	8.073	12.530		12.229	11.363	12.726	-7.232	11.56	53.90	1.02E-13	-12.991
540	798.4	9.735	7.723	12,355		12.185	11.352	12,605	-7.353	10.62	55.91	7.09E-14	-13,149
560	798.6	9.430	7.375	12,181		12.141	11.341	12.494	-7.463	9.64	58.43	5.00E-14	-13,301
580	798.8	9,128	7.030	12,008		12.098	11.330	12.395	-7.562	8.67	61.62	3.58E-14	-13.446
600	798.9	8.827	6.686	11.836		12,055	11.319	12.307	-7.650	7.75	65.65	2.61E-14	-13.583
620	799.0	8,528	6.344	11,665		12,012	11.308	12.229	-7.728	6.92	70.70	1.95E-14	-13.711
640	799.1	8,230	6.005	11,495		11.970	11.297	12.159	-7.798	6.19	76.95	1.48E-14	13.828
660	799.2	7.935		11,326		11.927	11.286	12.097	-7.860	5.57	84.56	1.16E-14	-13.936
680	799.3	7.641		11.158		11.885	11.276	12.042	-7.916	5.06	93.60	9.25E-15	-14.034
700	799.4	7.349		10,991		11.844	11.265	11.991	-7.966	4.64	104.07	7.55E-15	-14.122
720	799.4	7.058		10.826		11.802	11.255	11.945	-8.012	4.30	115.81	6.29E-15	-14,201
740	799.5	6.769		10,661		11.761	11.244	11.902	-8.055	4.03	128.55	5.34E-15	-14.272
760	799.5	6.482		10.497		11.720	11.234	11.862	-8.095	3.81	141.87	4.61E-15	-14.337
780	799.6	6.196		10.333		11.679	11.224	11.824	-8.133	3.64	155.31	4.03E-15	-14.395
800	799.6			10,171		11.638	11.213	11.788	-8.170	3.49	168.45	3.56E-15	-14.449
820	799.6			10.010		11.598	11.203	11.753	-8.204	3.37	180.83	3.17E-15	-14.499
840	799.7			9.850		11.558	11.193	11.720	-8.237	3.27	192.25	2.85E-15	-14.545
860	799.7			9.690		11.518	11.183	11.687	-8.270	3,19	202.60	2.58E-15	-14.589
880	799.7			9.531		11.478	11.173	11.656	-8.301	3.11	211.86	2.34E-15	-14.631
900	799.7			9.374		11.439	11.163	11.626	-8.331	3.04	220.09	2.13E-15	-14.671
920	799.8			9.217		11.400	11.153	11,596	-8.361	2.97	227.41	1.95E-15	-14.710
940	799.8			9.061		11.360	11.143	11.568	-8.389	2.91	233.97	1.79E-15	-14.748
960	799.8			8.906		11.322	11.134	11.540	-R.417	2.86	239.91	1.64E-15	-14.784
980	799.8			8.751		11.283	11.124	11.512	-8.444	2.80	245.36	1.51E-15	-14.820
1000	799.8			8.598		11.245	11.114	11.486	-8.471	2.75	250.44	1.40E-15	-14.855
1050	799.8			8.218		11.150	11.090	11.422	-8.535	2.62	262.16	1.155-15	-14.940
1100	799.9			7.843		11.056	11.067	11.362	-8.595	2.49	273.41	9.53E-16	-15.021
1150	799.9			7.473		10.963	11.043	11.306	-A.651	2.37	284.91	7.96E-16	-15.099
1200	799.9			7.109		10.872	11.020	11.253	-8.703	2.25	297.06	6.71E-16	-15.173
1250	799.9			6.748		10.782	10.998	11.204	-8.753	2.14	310.28	5.69E-16	-15.245
1300	799.9			6.393		10.693	10.975	11.158	-8.799	2.04	324.72	4.86E-16	-15.313
1350	799.9			6.042		10.605	10.953	11.114	-8.843	1.94	340.52	4.18E-16	-15.379
1400	799.9		-			10.519	10.931	11.073	-8.884	1.84	357.80	3.62E-16	-15.441
1450	799.9					10.433	10.910	11.035	-8.922	1.76	376.75	3.16E-16	-15.500
1500	800.0					10.349	10.888	10,999	-8.958	1,68	397.39	2.78E-16	-15,556
1600 1700	800.0					10.183	10.847	10.932	-9.025	1.54	443.86 497.51	2.19E-16 1.77E-16	-15.660 -15.752
1800	0.008					10.021 9.864	10.806 10.766	10.472 10.818	-9.085 -9.139	1.43	557.67	1.46E-16	-15.835
1900	800.0					9.864	10.728	10.767	-9.139 -9.189		623.66	1.23E-16	-15,908
2000	800.0 800.0					9.710	10.728	10.787	-9.109 -9.236	1.21	693.94	1.06E-16	-15.974
2100	800.0					9.413	10.653	10.721	-9.280	1.17	766.66	9.25E-17	-16.034
2200	800.0					9.413	10.617	10.636	-9.321	1.14	840.47	8.16E-17	-16.088
2300	800.0					9.131	10.582	10.597	-9.360	1.11	913.58	7.28E-17	-16.138
2400	800.0					8.994	10.547	10.559	~9.398		984.49	6.56E-17	-16.183
2500	800.0					8.860	10.514	10.523	-9.434		1052.72	5.94E-17	-16,226
2,000	000.0					~ 2000			~79727				

HEIGHT KM	TEMP K	LOG (N (N2) /M3)	LOG(N(O2) /M3)	LGG(N(O) /M3)	LOG (N (A) /M3)	LOG (N (HE) /M3)	LOG (N (H) /M3)	LOG(N /N3)	LOG (PRESSURE NT/M2)	MEAN MOL WT	DENSITY SCALE HT KM	DENSITY KG/M3	LOG(DEN KG/M3)
90	188.0	19.746	19.170	17.390	17.824	14.573		19.854	732	28.91	5.63	3.43E-06	-5,465
92	188.1	19.592	19,009	17.547	17,669	14.418		19.700	m.886	28.85	5.59	2.40E-06	-5.620
94	188.5	19.437	18.843	17.646	17,515	14.263		19.545	-1.040	28.76	5.55	1.68E-06	-5.776
96	189.3	19.281	18,673	17.686	17.359	14.108		19,390	-1.193	28.65	5.53	1.17E-06	-5,933
98	190.8		18.499	17.688	17.204	13.953		19.235	-1.344	28.52	5.54	8.13E-07	-6.090
100	193.3	18.972	18,324	17.666	17.049	13.798		19.081	-1.493	28,36	5.63	5.67E-07	-6.246
102	197.3		18,150	17,601	16.837	13.773		18.929	-1.636	28.21	5.63	3.98E-07	-6.400
104	203.2	18,668	17.973	17,544	16.626	13.745		18.778	-1.774	28.02	5.64	2.79E-07	-6,555
106	211.8	18.517	17.792	17.488	16.417	13.714		18.627	-1.907	27.80	5.66	1.96E-07	-6.708
108	223.4	18.366	17.608	17.429	16.212	13.682		18.479	-2.032	27.54	5.72	1.38E-07	-6.861
110	238.3		17,420	17.363	16.012	13.647		18.333	-2.150	27.27	5.88	9.75E-08	-7.011
115	286.6		16.981	17.177	15.553	13.560		17.997	-2.406	26.62	6.82	4.39E-08	-7.357
120	340.3		16.632	16,989	15.163	13.482		17.714	-2.614	26.11	8.16	2.25E-08	-7.648
125	395.9		16.347	16,818	14.829	13.414		17.475	-2.787	25.69	9.50	1.27E-08	-7.895
130	451.8		16.103	16.668	14.540	13,355		17.269	-2.936	25.29	11.02	7.81E-09	-8.107
135	504.9		15.890	16,538	14.286	13.305		17.092	-3.065	24.93	12.67	5.12E-09	-8.291
140	553.2		15.702	16.424	14.061	13.262		16.938	-3.179	24.57	14.41	3.53E-09	-8.452
145	595.8		15.533	16.323	13.859	13.225		16.801	-3.284	24.24	16.15	2.55E-09	-8.594
150	632.7		15.380	16.234	13.673	13.193	11.877	16.679	+3+379	23.91	17.86	1.90E-09	-8.722
155	664.2		15,238	16.152	13.502	13.164	11.818	16.569	-3.469	23.60	19.48	1.45E-09	-8.838
160	691.1		15,106	16.077	13.341	13.139	11.768	16,467	-3.553	23,29	20.99	1.13E-09	-8.945
170	734.0		14.861	15.942	13.042	13.096	11.686	16.284	-3.710	22.69	23.71	7.25E-10	-9.140
180	766.1		14.636	15,820	12.766	13.058	11.623	16.121	-3.855	22.12	26.06	4.85E-10	-9.314
190	790.5		14,424	15.707	12,504	13.025	11.573	15.972	-3.990	21,57	28.14	3.35E-10	-9.474
200	809.5		14.221	15.600	12.253	12.995	11.522	15.833	-4.119	21.04	30.02	2.38E-10	-9.624
210	824.6		14.024	15.498	12.010	12.966	11.488	15.703	-4.241	20.55	31.73	1.72E-10	-9.764
220	836.6		13.833	15.400	11.773	12.939	11.460	15.579	-4.358	20.08	33.35	1.27E-10	-9.898
230	846.4		13.647	15,304	11.541	12.913	11.437	15.461	-4.471	19.65	34.87	9.44E-11	-10.025
240	854.4		13.463	15.210	11.313	12.888	11.417	15.348	-4.580	19.24	36.32	7.13E-11	-10,147
250	860.9	14,598	13,283	15.118	11.089	12.864	11.400	15.240	-4.685	18.87	37.71	5.44E-11	-10.264
260	866.4		13,105	15.028	10.867	12.840	11.385	15.134	-4.788	18.52	39.04	4.19E-11	-10.378
270	870.9	14.287	12.929	14,939	10.648	12.817	11.372	15.032	-4.888	18.21	40.30	3.26E-11	-10,487
280	874.7		12.754	14.850	10.430	12.794	11.360	14.933	-4.985	17.92	41.51	2.55E-11	-10,593
290	877.9		12.581	14.763	10.215	12.772	11.350	14.836	-5.080	17.66	42.65	2.01E-11	~10,697
300	880.6		12.410	14.677	10.001	12.750	11.340	14.742	-5.174	17.43	43.73	1.60E-11	-10.797
310	882.9		12.239	14.591	9.789	12.728	11.331	14.649	-5.265	17.21	44.76	1.27E-11	-10.895
320	884.9		12.070	14.506	9.578	12.706	11.323	14.558	-5.355	17.01	45.72	1.02E-11	-10.991
330	886.6		11.902	14.421	9.368	12.685	11.315	14.468	-5.444	16.83	46.62	8.22E-12	-11.085
340	888.0		11,734	14.337	9.159	12.664	11.308	14.380	-5.531	16.66	47.47	6.64E-12	-11.178
350	889.3	13.095	11.568	14.254	8.951	12.642	11.301	14.294	-5.617	16.51	48.26	5.39E-12	-11.268
360	890.4		11.402	14.170	8.744	12.621	11.295	14.208	-5.702	16.36	49.00	4.39E-12	-11.358
370	891.3		11,237	14.088	8,538	12.601	11.288	14.124	-5.786	16.22	49.69	3.58E-12	-11.446
380	892.2		11.073	14.005	8.333	12.580	11.282	14.041	-5.868	16.08	50.34	2.93E-12	-11.532
390	892.9		10,909	13.923	8.129	12.559	11.276	13.959	-5.950	15.94	50.95	2.41E-12	-11,618
400	893.6	12.375	10.746	13.842	7.926	12.539	11.270	13.878	-6.031	15.80	51.53	1.98E-12	-11.703

EXOSPHERIC TEMPERATURE = 900 K

L06 (DEN KG/M3)		=13.361 =13.606 =13.606 =13.824 =13.922 =14.012		1155.6331 1155.6331 1155.6331 1156.9825 1166.049
DENSITY KG/M3	2.00	3.00 S S S S S S S S S S S S S S S S S S	8 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2.94E-16 1.84E-16 1.49E-16 1.04E-16 1.04E-16 8.94E-17 7.76E-17
DENSITY SCALE HT KM	00000000000000000000000000000000000000	67.41 70.72 74.75 79.66 85.57 92.60 100.82 110.91	1158.06 11711.13 11711.13 1186.02 1186.02 1186.02 1186.02 128.00 128.00 128.00 128.00 128.00 128.00 139.00	391.70 425.00 463.45 507.74 613.96 615.68 742.44 813.20
MEAN WOL WT	112 122 133 134 135 135 135 135 135 135 135 135 135 135	0 0 0 0 0 0 0 0 0 4 4 6 6 6 6 6 6 6 6 6	44 mamamama au 07070707070707070707070707070707070707	11 1 2 2 5 0 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7
LOG (PRESSURE NT/M2)	# 66 . 34 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3	-7,470 -7,557 -7,636 -7,707 -7,771 -7,882 -7,931 -7,931	### ### ### ### #### #################	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LOG (N	13.00 13.00	12.436 12.349 12.349 12.199 12.135 12.077 11.9975 11.888	11.849 11.743 11.743 11.743 11.619 11.659 11.659 11.659 11.650 11.259 11.259 11.259 11.259 11.259 11.259	10,935 10,864 10,860 10,742 10,690 10,597 10,556 10,517 10,517
LOG(N(H)	11,259 11,248 11,237 11,227 11,226 11,206 11,196 11,196 11,196	11.157 11.198 11.138 11.129 11.110 11.101 11.001	11,064 11,055 11,055 11,002 11,002 11,002 10,993 10,964 10,963 10,968 10,968 10,861 10,861 10,861 10,861 10,861	10.747 10.711 10.676 10.661 10.575 10.575 10.511 10.481
LOG (N(HE) /M3)	12.498 12.417 12.417 12.337 12.299 12.221 12.221 12.182	12.106 12.068 12.088 11.993 11.956 11.956 11.868 11.866	11. 738 11. 538 11. 667 11. 667 11. 653 11. 554 11. 458 11. 254 11. 256 11. 092 11. 012 10. 933 10. 778	10.480 10.336 10.336 10.196 9.966 9.569 9.569 9.423
LOG (N (A) /M3)	7.521 7.120 6.120 6.325			
LOG(N(O)	13.679 13.518 13.518 13.000 12.700 12.730 12.573 12.651	12.116 11.965 11.815 11.666 11.517 11.370 11.022 11.022	100 100 100 100 100 100 100 100 100 100	
LOG (N (O2) /M3)	10.422 10.100 9.781 9.463 9.148 8.524 8.514 7.907	7.297 6.995 6.695 6.397 6.100		
, LOG(N(N2)	12.091 11.810 11.530 11.252 10.976 10.429 10.158 9.889	9.356 9.091 8.091 8.567 7.77 7.792 7.283	6.780 6.282 6.282 6.282	
TEMP L	88999999999999999999999999999999999999	88 98 88 98 98 98 98 98 98 98 98 98 98 9	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	60006666666666666666666666666666666666
HE I GHT KM	4444 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	620 640 680 700 720 740 740 780	820 840 860 980 920 940 940 940 1000 1000 1150 1250 1250 1350 1450	1600 1700 1800 1900 2000 2100 2200 2200 2400 2500

FXOSPHERIC TEMPERATURE = 1000 K

LOG (DEN KG/M3)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16.01	111111 3000000000 3111111 0000000000 0000000000	110,0938	
DENSITY KG/M3	3,43E-06 1,67E-06 11.17E-06 8,13E-07 3,67E-07	1.995 4.326 4.326 1.2266 1		1,21E.09 7,84E.10 5,34E.10 3,76E.10 2,72E.10 2,00E.10 1,50E.10		
DENSITY SCALE HT KM	10 10 10 10 10 10 10 10 10 10 10 10 10 1			21.67 24.65 27.34 29.69 31.81 35.71 37.16		ຄູ່ຄູ
MOL WI	20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	~~ 	446	23.48 22.93 22.93 21.89 21.40 20.94 20.50	dw	16,31
LGG (PRESSURE NT/M2)		#	13.44	11111111111111111111111111111111111111	44 44/46/00/00/00/00/00/00/00/00/00/00/00/00/00	72
L06(N	199.545 199.545 199.545 199.545 199.535 199.535		16.698 16.698 16.590	16.491 16.314 16.157 16.015 15.883 15.460 15.644	22 22 44 67 6 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6	14.714 14.138 14.064
L0G(N(H)			11,756	11.646 11.563 11.448 11.446 11.392 11.357	<i>nn nnnn</i>	11,135
LOG (N (HE) /M3)	14.573 14.418 14.263 14.108 13.953 13.772	13,713 13,644 13,654 13,476 13,408 13,208 13,208	. 18 . 18	13,130 13,087 13,087 13,050 13,017 12,987 12,960 12,935		12.587 12.587 12.568
L06(N(A) /M3)	17.0569 17.0569 17.0569 17.0569 17.0509 17.069	16.0013 15.0013 15.0013 15.0013 14.0013 14.0013		13.401 13.118 12.857 12.613 12.381 12.157 11.939		8 8 6 3 8 8 4 5 5
LCG(N(0) /M3)	17.547 17.646 17.6646 17.6687 17.6687 17.6665	44 WH 98 9 7 4 6 6 7 4 6 6 7 6 7 6 7 6 7 6 7 6 7 6	23.	16.085 15.953 15.836 15.729 15.629 15.534 15.934		14.174 14.100 14.027
LOG (N (O2)	19.170 19.009 18.843 18.643 18.499 18.323	20 400 m o c i	15,561 15,412 15,276	15,148 14,916 14,703 14,504 14,315 14,134 13,959	13.620 13.620 13.133 12.975 12.975 12.509 12.509 12.009 11.753	11,456 11,308 11,161
TENP LOG(N(N2) I	19,746 19,592 19,593 19,281 19,128 19,128 18,971	8 8 35 1 36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.61 6.47 6.35	16,240 16,032 15,843 15,667 15,561 15,341 15,186	44 44444666666666666666666666666666666	12.991 12.862 12.733
TEMP L	1888 1888 1888 1989 1910 1910 1930 1930 1930 1930 1930 193	25 25 25 25 25 25 25 25 25 25 25 25 25 2	27. 69. 06.	738.5 790.4 829.9 860.4 884.4 903.5	64 44 44 44 44 44 44 44 44 44 44 44 44 4	990.0 990.9 991.7
HE I GHT KM	100 100 100 100 100 100 100 100 100 100	106 108 1110 1125 1125 1130 1135	4 ru ru	1140 1180 1190 220 230	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	980 980 400 400

									L0G	MFAN	DENSITY		
HF I GHT	TEMP	LOGININAL	LOG (N (02)	106(N(0)	LOG (N(A)	LOG (N (HE)	LOGINIHI	LOGIN	(PRFSSURE		SCALE HT	DENSITY	LOG (DEN
KM	K	/M3)	/M3)	/M3)	/M3)	/M3)	/M3)	/M3)	NT/M2)		KM	KG/M3	KG/M3)
•;••		/ 112 /	,,,,,	,,,,,,,		, 113,	,,	, 11157	14171727		MI	1107 113	
420	993.1	12,477	10.869	13.880	8.091	12.531	11.118	13.917	-5-946	15.93	57.20	2.18E-12	-11,661
440	994.2	12,223	10,579	13,735	7.729	12,495	11,108	13,773	-6.089	15.68	58.37	1.54E-12	11.811
460	995.1		10,291	13,591	7.369	12,459	11.098	13,633	-6.229	15.42	59.46	1.10E-12	-11,959
480	995.8		10,005	13,448	7.013	12.423	11.089	13.496	-6.365	15.13	60.50	7.88E-13	-12,103
500	996.4		9.722	13,306	6.658	12.387	11.079	13.363	-6.498	14.81	61.52	5.68E-13	-12.246
520	996.9		9.439	13.165	6.306	12.352	11.070	13.234	-6.627	14.44	62.56	4.11E-13	-12.386
540	997.3		9.159	13.025		12.317	11.061	13.110	-6.752	14.02	63.65	3.00E-13	-12,523
560	997.6		8.881	12,885		12.282	11.052	12.989	-6.872	13.54	64.82	2.19E-13	-12,659
580	997.9		8.604	12.747		12.247	11.043	12.874	-6.986	13.00	66.13	1.62E-13	-12.791
600	998.2		8.329	12,609		12.213	11,034	12.765	-7.096	12.40	67.63	1.20E-13	-12,921
000	970.2	10.233	0.329	12,009		12.213	11,034	12.707	#14030	12,40	01.00	1,200013	
620	998.4	10.013	8,055	12,472		12.178	11.025	12.662	-7.199	11.74	69.35	8.95E-14	-13,048
640	998.5	9.775	7.783	12,336		12.144	11.017	12,565	-7.295	11.04	71.38	6.74E-14 .	-13,172
660	998.7		7,513	12,201		12,110	11.008	12.475	-7.386	10.32	73.77	5.11E-14	-13,291
680	998.8		7.244	12.067		12.077	11.000	12.391	-7.469	9.59	76.63	3.92E-14	-13.407
700	998.9		6,977	11,933		12.043	10,991	12.314	-7.546	8.86	80.02	3.03E-14	-13,518
720	999.0		6.712	11,800		12.010	10.983	12.744	-7.617	8.17	84.07	2.38E-14	-13,624
740	999.1		6,448	11,668		11.977	10.974	12,179	-7.682	7.53	88.87	1.89E-14	-13.724
760	999.2		6.185	11,537		11.944	10.966	12,119	-7.741	6.94	94.52	1.52E-14	-13.819
780	999.3		0,.05	11,407		11.911	10.958	12.065	-7.795	6.41	101.12	1.24E-14	-13,908
800	999.3			11,277		11.879	10.950	12.015	-7.845	5.94	108.75	1.02E-14	-13,991
•••	37762					114019	20093	12.013	41,043	2477		.,02	-13,,,,
820	999.4	7.694		11,148		11.847	10,941	11,969	-7.891	5.53	117.43	8.55E-15	-14.068
840	999.4	7.470		11,019		11.815	10.933	11,926	-7.934	5.19	127.16	7.26E-15	-14,139
860	999.5			10.892		11.783	10,925	11.886	-7.975	4.89	137.89	6.24E-15	-14,205
880	999.5			10.765		11.751	10.917	11.848	-8.012	4.64	149.50	5.43E-15	-14,265
900	999.6			10.639		11.719	10,909	11.812	-8.048	4.43	161.80	4.77E-15	-14,321
920	999.6			10,513		11.688	10.901	11.778	-8.082	4.26	174.56	4.24E-15	-14.373
940	999.6			10.388		11.657	10.894	11.745	-8.115	4.11	187.53	3.80E-15	-14,421
960	999.6			10.264		11.626	10.886	11.714	-8.146	3.98	200.42	3.42E-15	-14.466
980	999.7			10.141		11.595	10.878	11.684	-8.176	3.88	213.01	3.11E-15	-14.508
1000	999.7			10.018		11.564	10.870	11.654	-8.206	3.79	225.07	2.84E-15	-14.547
						11,504		••••	-50220	3.1.			
1050	999.7	,		9.714		11.488	10.851	11.584	-8.276	3.61	252.00	2.30E-15	-14.638
1100	999.8	}		9.414		11.413	10.832	11.518	-8.342	3.48	273.85	1.90E-15	-14.721
1150	999.8	1		9.118		11.339	10.813	11.454	-8.406	3.37	291.09	1.59E-15	-14.797
1200	999.8	1		8.826		11.266	10.795	11.394	-8.466	3.28	304.82	1.35E-15	-14.870
1250	999.9)		8.538		11.194	10.777	11.335	-8.525	3.19	316.29	1.15E-15	-14.940
1300	999.9)		8.254		11.123	10.759	11.279	-8.581	3.11	326.39	9.82E-16	-15,008
1350	999.9			7,973		11.052	10.741	11.225	-8.635	3.03	335.74	8.45E-16	-15.073
1400	999.9			7.696		10.983	10.724	11.174	-8.686	2.94	344.79	7.29E-16	-15.137
1450	999.9			7.423		10.915	10.706	11.124	-8.736	2.86	353.92	6.32E-16	-15,199
1500	999.9			7,153		10.847	10.689	11.077	-8.783	2.78	363.29	5.50E-16	-15,260
1600	999.9			6.623		10.715	10.656	10.987	-8.873	2.61	383.21	4.20E-16	-15.376
1700	999.9			6.106		10.585	10.623	10.906	-8.954	2.44	405.55	3.26E-16	-15.487
1800	1000.0					10.459	10.592	10.832	-9.028	2.28	430.68	2.57E-16	-15.590
1900	1000.0					10.336	10.561	10.764	-9.096	2.13	459.34	2.05E-16	-15.688
2000	1000.0					10.216	10.530	10.702	-9. 158	1.99	491.85	1.66E-16	-15.780
2100	1000.0					10.099	10.501	10.646	-9.214	1.86	528.47	1.37E-16	-15.865
2200	1000.0					9.984	10.472	10.594	-9.266	1.74	569,81	1.14E-16	-15.944
2300	1000.0					9.873	10.444	10.547	-9.313	1.64	615.98	9.61E-17	-16.017
2400	1000.0					9.763	10,416	10.504	~9 • 356	1.55	667.00	8.22E-17	-16.085
2500	1000.0	•				9.656	10.390	10.463	-9.397	1.48	723.19	7.12E-17	-16,148

HEIGHT KM	TEMP K	LOG (N (N2) /M3)	LOG(N(02) /M3)	LOG(N(O) /M3)	LOG(N(A) /M3)	LOG (N(HE) /M3)	LOG (N (H) /M3)	LOG(N /N3)	LOG (PRESSURE NT/M2)	MEAN MOL WT	DENSITY SCALE HT KM	DENSITY KG/M3	LOG(DEN KG/M3)
90	188.0	19:746	19,170	17.390	17.824	14.573		19.854	732	28.91	5.63	3.43E-06	-5.465
92	188.1	19,592	19,009	17,547	17.669	14.418		19.700	886	28.85	5.58	2.40E-06	-5.620
94	188.5	19.437	18.843	17.646	17.514	14.263		19.545	-1.040	28.76	5.55	1.67E-06	-5.776
96	189.5	19.281	18.672	17.686	17.359	14.108		19.390	-1.193	28,65	5.53	1.17E-06	-5.933
98	191.2	19,126	18.499	17.687	17.204	13.953		19.235	-1.344	28.52	5.53	8.12E-07	-6.090
100	194.0	18,971	18.323	17,665	17.049	13.798		19.080	-1.492	28.36	5.62	5.66E-07	-6.247
102	198.5	18.819	18.149	17.599	16.836	13.771		18.928	-1.634	28.21	5.61	3.97E-07	-6.402
104	205.2	18,667	17.971	17.542	16.625	13.743		18,776	-1.772	28.02	5.62	2.78E-07	-6.556
106	214.8	18.514	17.791	17,485	16.417	13.711		18,625	-1.903	27.80	5.65	1.95E-07	-6.711
108	227.9	18.363	17.606	17.424	16.212	13.677		18.476	-2.026	27.55	5.71	1.37E-07	-6.864
110	244.7	18.215	17.419	17.357	16.013	13.641		18.330	-2.141	27,28	5.88	9.69E-08	-7.014
115 120	299.1	17.871	16.983	17.169	15.560	13.551		17.996	-2.389	26.65	6.89	4.38E-08	-7.358
125	359.6 422.2	17.580 17.333	16.640	16.982	15,179	13.471		17.717	-2.587	26.17	8.34	2.27E-08	-7.645
130	485.4	17.120	16.364	16,813	14.857	13.402		17.483	-2.751	25.77	9.78	1.30E-0B	-7.885
135	546.5	16,935	16.129 15.925	16,666 16,538	14.580 14.338	13.343		17.284	-2.890	25.42	11.39	8.11E-09	-8.091
140	603.8	16,773	15.745	16,427	14.124	13.292 13.248		17.112	-3.011	25.08	13.12	5.39E-09	-8.269
145	656.1	16.628	15.584	16.328	13.932	13.210		16.962 16.830	-3.117	24.77	14.93	3.77E-09	-8.424
150	703.2	16.497	15.439	16.241	13.759	13.177	11.650	16.713	-3.213	24.47	16.78	2.75E-09	-8.561
155	745.0	16.377	15.306	16,162	13.599	13.148	11.591	16.607	-3.300	24.18	18.64	2.07E-09	-8.684
			13,300	_	,	13.140	* * * 5 7 1	10.001	-3.381	23,90	20.46	1.60E-09	-8.795
160	781.8	16.267	15.183	16,090	13.450	13.122	11.540	16.510	-3.457	23.64	22.22	1.27E-09	-8.897
170	842.8	16.066	14.959	15.961	13.179	13.078	11.455	16.337	-3.597	23.12	25.50	8.34E-10	-9.079
180	890.0	15.886	14.756	15.848	12,931	13.041	11.389	16.185	-3.725	22.63	28.43	5.76E-10	-9.240
190	927.1	15.719	14.568	15,745	12.701	13.009	11.335	16.049	-3.844	22.16	31.05	4.11E-10	-9.386
200	956.4	15.562	14.391	15.650	12.483	12.980	11.280	15,923	~3.95 6	21.70	33.43	3.02E-10	-9.520
210 220	979.9	15.413	14,222	15.560	12.274	12.954	11.243	15.806	-4.063	21,27	35.54	2.26E-10	-9.646
230	998.9	15.269	14.058	15.474	12,073	12.929	11.212	15.695	-4.165	20.85	37.51	1.72E-10	-9.765
240	1014.3	15.129	13,900	15.391	11.876	12.906	11.185	15.591	-4.263	20.45	39.34	1.32E-10	-9.878
250		14.993	13.745	15.311	11.685	12.884	11.163	15.491	-4.358	20.08	41.07	1.03E-10	-9.986
230	1037.4	14.860	13,593	15,233	11.496	12.863	11.144	15.395	-4.449	19.72	42.69	8.13E-11	-10,090
260	1046.1	14.729	13,444	15,157	11.311	12.842	11.127	15,302	-4.538	19.39	44.24	6.46E-11	-10.190
270	1053.4	14.600	13.298	15.082	11.129	12.822	11.112	15.213	-4.624	19.07	45.71	5.175-11	-10.286
280	1059.4	14.473	13.152	15,008	10.948	12.803	11.099	15,126	-4.709	18.78	47.13	4.17E-11	-10.380
290	1064.5	14.347	13,009	14.936	10,770	12.784	11.087	15.042	-4.791	18.51	48.49	3.38E-11	-10.471
300	1068.9	14,222	12.867	14.864	10,593	12.765	11.077	14.959	-4.872	18,25	49.79	2.76E-11	-10,559
310	1072.6	14.099	12.726	14.792	10.417	12.747	11.067	14.879	-4.951	18.01	51.04	2.26E-11	-10,645
320	1075.7	13,976	12,586	14.722	10.243	12.729	11.058	14.800	-5.028	17.79	52.23	1.86E-11	-10.729
330	1078.4	13.854	12.447	14,652	10.070	12.711	11.050	14.723	-5.104	17.59	53.38	1.54E-11	-10.812
340	1080.8	13.734	12.309	14.582	9.898	12.693	11.043	14.647	-5.179	17.40	54.47	1.28E-11	-10.892
350	1082.8	13,613	12.172	14.514	9.727	12.676	11.036	14,572	-5.253	17.23	55.52	1.07E-11	-10.971
360	1084.6	13.494	12.036	14.445	9.557	12.658	11.029	14.499	-5.326	17.06	56.51	8.94E-12	-11.049
370	1086.1	13.375	11,900	14.377	9.388	12.641	11.023	14.427	-5.397	16.91		7.50E-12	-11.125
380	1087.5	13.257	11.765	14,309	9.219	12.624	11.017	14.355	-5.468	16.77		6.31E-12	-11.200
390	1088.6	13.139	11.631	14,242	9.051	12.607	11.011	14.285	~5.538	16.63		5.32E-12	-11.274
400	1089.7	13.022	11.497	14.174	8.884	12.590	11.006	14.216	-5.607	16.51	60.03	4.505-12	-11,347

œ

EXOSPHERIC TEMPERATURE = 1100 K

LOG (DEN KG/M3)	-11.489	206	2	2.16	7.7	2.53	2.66	2.78	2	3.0	12	2,4	•	7	3.63	3,72	3.81	3.89	ď.	* ·	• •	4.23	4.28	-14,335	200	14.48	14.5	14.65	14.80	14.86	-14.932	6.41	10,01	17.61	5.2	5,33	5.43	ָ ֓֞֝֝֝֓֞֝֝֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֡֓֡֓֡֓֓֓֡֓֡֓֡֓֡	5,71	8	5.88	-15,956	70.0	
DENSITY KG/M3	3.24E.12 2.35E.12	26E-1	30E-1	90E-1	85E.1	89E-1	19E-1	.66E-1	.27E-1	.73E-1	7.51E-14	845.4	6.7 E-1	R7E.1	31E-1	87E.1	.54E-1	.27E-1	07E1	. Ubr. 1	72E-1	88E-1	. 19E-1	4.62E-15	155.	26E-1	64E1	195.	57E.1	35E-1	1.17E-15	015	2 to 12 to 1	1 25.	.96E-1	65E-1	675-1	24F	92E-1	58E-1	32E-1	1.11E-16	100	
DENSITY SCALE HT KM	61.54 62.91	 	4.9	5.		7.0	1.9	3,3	4.7	4.9	•	o •	֓֞֜֜֜֜֜֜֜֜֜֜֜֜֓֓֓֓֜֜֜֜֜֜֜֓֓֓֓֜֜֜֜֜֓֓֓֜֜֜֜֜		3.5	8.3	03.7	6.60	17.1	7.0°	44.1	54.9	66.5	178.68	۶. ا د . ا	23.4	54.0	8000	200	35.7	348.00	 	1 6 6 7	:	7.76	12.3	31.93	74.	7.00	28.6	59.8	594.32	24.0	
MEAN MOL WT.	16.27	ກູດ	5	5.0	- 4	0	3.6	3,1	2.6	2.1	11,50	3°C	7 5	•		-	2	۲.	7	<u>ت</u> د	จ	6		4.57	*		8	•	ی و	. 4	3,39	ų,	٧-	•	0	ō.	•	۰	9	2	₹	1.98	٥	
LOG (PRF SSURE NT/M2)	5.743	0 • 0 6 • 1	6.2	6.0	9 4	6.7	œ	93	ē	=	-7.224	٠	9	3 4	2	.5	7	92	8	6		96	8	-8.034	å	8.1	8.2	8			-8.501	8	6	0 0		8.83	8.91	8,00	0000		9.24	49,292		
LOG (N	14.079	3.68	3.56	3.44	36.6	3,09	2.98	2.88	2,78	2.68	12,595	2.51	7.43 2.43	900	2.22	2.16	2.10	2,05	2,01	1.96	76°1	1.85	1.81	11.785	1.75	1.68	1991	1.54	24.	1.37	11,318	1.26	1.21	• 1	1.07	96.0	06.0	28.00		53	0,57	10.526	4	
LOG (N(H)	10.995 10.985	90	0.95	9.0	200	0.92	0.91	0.9	6.0	8.0	10,885	3		9 0	8.0	0,8	0.83	0.82	1800	300	2 0	0.78	0.78	10.774	٥	75	0.73	7	200	99.0	10.650	63	70	2	0.5	0.5	0.5	* <	1 4	1 4	0,3	10,355	•	
LOG (N (HE)	12,556	2.45	2,45	2,39	2.20	2.29	2,26	.23	• 20	. 17	12,143	Ţ.	900	90	66	96	1.93	1,90	1.87	48.1	1 0 0 1	1.76	1.73	11,704	1.67	1.60	1,53	1.47	1 . 40	1.27	11.211	1,14	200	70°T	90	28	29	o u	3 2	4	13	0 0	.	ノ
LOG (N (A) /M3)	8 6 5 5 3 3 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5			•		•																																						
(0) N) TOP (N)	14,041	- 49	51	66.	9-	5	88	۲,	2	2	•	٠,	•	• -	: .:	11,673	1.55	1,43	1,32	7.0	70.07	0.86	0,75	10.640	70.0	.25	6.0	Ξ,	•	92	8.669	4.	•	, ,	44.	-97	6.514	٥						
LOG (N (02) /M3)	11,231	0.44	0,18	93	0 3	17	92	67	42	17	7.934	60.	•		73	49	~	G																										
LDG (N (N2)	12,789	2.10	1,87	1.65	7.00	96.0	0.76	0.54	.33		9.902	6,0	**		85	4	43	.23	60,		4 6	23	.03	6.836	40	6.157																		
TEMP LC	1091.4	093	095.	960	060	097	097	960	960	960	86	860	860	000	660	660	660	660	660	660	000	660	660	1099.6	660	660	660	660	600	660	1099,9	660	660	. 660	660	660	•660		90	100	100	110000	100	
HE1GHT KM	450	4 4 60	200	520	, r	580	009	620	640	099	089	200	072	26.6	780	800	820	840	860	200	920	940	096	980	1000	05	2:	2 5	7 5	36	1350	6 7	יי ה ני	2	1600	1700	1800	1900	2100	2200	2300	2400	0067	

EXOSPHERIC TEMPERATURE = 1200 K

HE I GHT KM	TEMP K	LOG(N(H2) /M3)	LOG(N(O2)	LOG(N(O) /M3)	LOG(N(A) /M3)	LOG(N(HE) /M3)	LOG (N(H) /M3)	LOG(N /M3)	LOG (PRESSURE NT/M2)	MEAN MOL WT	DENSITY SCALE HT KM	DENSITY KG/M3	LOG(DEN KG/M3)
90	188.0	19.746	19.170	17.390	17.824	14.573		19.854	732	28.91	5,63	3.43E-06	-5.465
92	188.	19.592	19.009	17.547	17.669	14.418		19.700	886	28.85	5.58	2.40E-06	-5.620
94	188.6	19.437	18,843	17.646	17.514	14.263		19.545	-1.040	28.76	5.54	1.67E-06	-5.776
96	189.6		18,672	17,686	17.359	14.108		19.390	-1.193	28.65	5.52	1.17E-06	-5.933
98	191.3	3 19.126	18.498	17,687	17.203	13.952		19.234	-1.344	28.52	5.53	8.12E-07	-6.090
100	194.3	18,970	18.323	17.664	17.048	13.797		19.080	-1.492	28.36	5.61	5.66E-07	-6.247
102	199.0	18.819	18.148	17,599	16.836	13.771		18.927	-1.634	28.21	5.60	3.96E-07	-6.402
104	206.0	18,666	17.971	17.541	16,625	13.742		18.775	-1.771	28.02	5.61	2.77E-07	-6.557
106	216.	18,513	17.790	17.483	16.416	13.710		18.624	-1.901	27.80	5.64	1.94E-07	-6.712
108	229.8	18,362	17,605	17.422	16.212	13.675		18.475	-2.024	27.55	5.71	1.37E+07	-6.865
110	247.4		17,418	17.354	16.014	13.639		18.329	-2.137	27.29	5.88	9.67E-08	-7.015
115	304.4		16.984	17,165	15.563	13.547		17.995	-2.382	26.67	6.92	4.38E-08	-7.359
120	367.8			16.979	15.186	13.467		17.718	-2.576	26.19	8.41	2.27E-08	-7.643
125	433.4		16.371	16.811	14.868	13.398		17.486	-2.737	25.81	9.89	1.31E-08	-7.882
130 135	499.		16.139	16,665	14,595 14,358	13.338		17.289	-2.872	25.46	11.55	8.23E-09	-8.085
140	564.6 625.		15.938 15.762	16.538 16.428	14.148	13.287 13.243		17.119 16.972	-2.989 -3.092	25.14 24.84	13.30 15.13	5.50E-09 3.86E-09	-8.260 -8.413
145	681		15.604	16.330	13.961	13.204		16.841	-3.092 -3.185	24.55	17.02	2.83E-09	~8.548
150	733.4		15,462	16.243	13.791	13.171	11.557	16.725	-3.269	24.28	18.93	2.14E-09	-8.669
155	779.9		15.332	16.165	13.636	13.142	11,497	16.621	-3.347	24.02	20.81	1.67E-09	-8.778
	_			-							_	_	
160	821.		15,212	16.093	13.491	13,115	11.445	16.525	-3.420	23.77	22.66	1.32E-09	-8.878
170	891.		14.995	15.967	13.229	13.071	11.360	16.356	-3.553	23.28	26.17	8.78E-10	~9.056
180	946.1		14.800	15.856	12.992	13.033	11.292	16.209	-3+675	22.82	29.37	6.13E-10	-9.213
190	990.		14.620	15.757	12.773	13.001	11.238	16.076	-3.788	22.38	32.26	4.43E-10	-9.354
200	1025.8		14.452	15.665	12,567	12.973	11.181	15.955	-3.894	21.95	34.89	3.29E-10	-9.483
210 220	1054.0		14.293	15.580	12.371 12.182	12.947	11.142	15.843	-3.994	21.55	37.23	2.49E-10	-9.604
230	1095.6		14.139 13.991	15.498 15.421	11.999	12.923	11.110 11.083	15.738	-4.090	21.15	39.41	1.92E-10 1.50E-10	-9.717 -9.824
240	1111.0		13.847	15.345	11.820	12.901 12.880	11.059	15.638 15.543	-4.182 -4.271	20.78 20.42	41.41 43.29	1.18E-10	-9.927
250	1123.7		13.706	15.272	11.645	12.860	11.039	15.452	-4.357	20.08	45.05	9.44E-11	-10.025
260	1134.3		13.568	15,201	11.474	12.840	11.021	15.364	-4.441	19.75	46.72	7.59E-11	-10.120
270	1143.1		13.432	15.132	11.305	12.822	11.006	15.280	-4.522	19.44	48.30	6.15E-11	-10.211
280	1150.5		13.298	15.063	11.138	12.804	10.992	15.198	-4.601	19.15	49.81	5.01E-11	-10.300
290	1156.7		13,165	14.996	10.973	12.786	10.980	15.118	-4.679	18.88	51.26	4.11E-11	-10.386
300	1162.0		13.034	14.929	10.810	12.768	10.969	15.040	-4.754	18.62	52.66	3.39E-11	-10.469
310	1166.5		12.904	14.863	10.648	12.751	10.959	14.965	-4.828	18.38	53.99	2.81E-11	-10.551
320	1170.4		12.775	14.798	10.488	12.735	10.950	14.891	-4.901	18.16	55.28	2.34E-11	-10.630
330	1173.7	-	12.648	14.734	10.329	12.718	10.941	14.818	-4.973	17.95	56.52	1.96E-11	-10.708
340	1176.5		12,521	14.670	10.171	12.702	10,934	14.747	-5.043	17.75	57.71 50.05	1.64E-11	-10.784
350	1179.0	13,803	12.395	14,606	10,013	12.685	10,926	14.677	-5.112	17,57	58.85	1.39E-11	-10,858
360	1181.2	13,694	12,269	14.543	9.857	12.669	10,920	14.608	-5.180	17.40	59.95	1.176-11	-10,932
370	1183.0		12.144	14.481	9.702	12.653	10.913	14.540	-5.247	17.24	61.01	9.92E-12	-11,003
380	1184.7	13.476	12,020	14,418	9.547	12.638	10.907	14.473	-5.313	17.08	62.01	8.43E-12	-11.074
390	1186.1	13,367	11.897	14,356	9.393	12.622	10.901	14,407	-5.379	16.94	62.98	7.19E-12	-11,143
400	1187.4	13,260	11.774	14,295	9.240	12.606	10.896	14,342	-5.443	16.81	63.90	6.14E-12	-11,212

œ

EXOSPHERIC TEMPERATURE = 1200 K

LOG (DEN KG/M3)	-11,346	4	o r	- 1	20	σ,	<u>-</u>	N	w	4	1	.12.551	14.00	11001	16.61	14.98	13,08	13,18	13,28	13,37	13.47	:		*40.0	13,72	13,80	13.88	13,95	14.01	, 08	14.14	14.19	 14.34	14.420	704	000					76.41	14.97	5	֓֞֜֜֜֜֜֜֜֜֜֜֜֜֓֓֓֓֜֜֜֜֜֜֓֓֓֓֓֜֜֜֜֜֓֓֓֓֓֓			200	2.47	900	2.64	2.72	90	φ. Φ.	
DENSITY KG/M3	516	1 L	1 1 1 1 1 1	1 1 0 0 0	40E-1	190	.08E-1	.17E-1	.73E-1	.64E-1	1	2.81E-13	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	335-1	145	23t 1	535-1	21E-1	196-1	39E-1	L	2.765-14	107	37E.	56E-1	315-1	12t-1	575-1	27E-1	21E-1	35E-1	7/6=1	3. (35-13	1170	1000	1 - 1 7 1 0	11100	1	1000	7 8 12 6 7 8	.05E=1	106		101		135.	. 35E-1	735-1	.25E-1	87E-1	1.565-16	.32E-1	
DENSITY SCALE HT KM	65.63	٦.	9	3	~	4	ď	٩	۲.	8		78.06	9	•	7.1	3.7	ຜູ	.5	6.6	2.6	5.7		66	e e	5	6	6	2	93		3	5	4 C	250.82	,	7.00	7.01	7000			* 1 0	93.0	7 0 1	9	2 5	7.	8 . 8	93.4	03.2	24.7	9	573.17	9.00	
MCL WT	16.57	٠.	٠,	ŝ	ŝ	'n	ທ້	'n	4	•		14.11	3.7		8	2.9	1.8		۲.	;	ď	•	0.6	*	œ.	4.	٠,	ď,	٦.	8	ŝ	7	•	2 ·	•	٠	•	•	•	•	٠	٠	•	•	٧.	~ું '	٠,	ŝ	æ	•	٥,	2.46	۳.	
1 OG (PRESSURE NT/M2)	5	69	5.81	5.93	6.05	6.16	6.27	6.38	649	9		-6.703	89	68.9	6.98	6	7.16	7.24	31	7.38	-7.453		-7.515	5	62	191	72	77	81	88	88	95	8	E 0 13	8.13	B • Z U	8.25	1 C 0 H	8.36	74.	8.47	• 52	;	•	2 6	8 1 8	8 . 86	8.94	9.01	0.	9.14	-9.198	• 25	
LOG(N /M3)	4.21	•	3.96	3.84	3,73	3.61	3,50	3,39	3.28	3.18		•	98	88	• 79	۲,	•62	• 54	46	39	12,328		2,76	2,20	2,15	2.10	2,05	2,01	1.96	•	1.89	1.85	1.77	11,708	1.064	85°1	1.52	1.46	1,41	1.36	30	1.26	2	9	7	6	7	ě	92	2	4,	10,583	52	
LOG(N(H)	0.88	10.876	0.86	0.85	0.85	0.84	0.83	.82	8.	18		•	٦.	٦.	٦.	٦.	٦.	۲,	~	٦.	10.740		10,734										0.65	10.642	79.0	19.0	0.59	0.58	0.56	3	. 53	• 52	(• ·	ံ	·.	o.	ំ	ં	ċ	ં	10,296	ċ	
LOG (N (HE) /M3)	2,57	•	2,51	2.48	2,45	2,42	2,39	2,36	2,33	2,30		7	2,25	2,52	2,19	2,16	2.14	2,11	2.08	2.05	12,031		ູ້	⇉	_:	.•	_:	÷	_:	•	_;	11.768	. .	11.642	₫.		_:	. .	₫,	₫.	∴	_;	č	90	.95	84	• 74	•64	• 54	•45	• 35	10.267	.17	ر
LDG (N (A)	93	8.633	693	6	.73	444	5.	•86	.57	28		6. 004																																										
LOG (N (O)	4.1	°.	ຕຸ	ж 8	3.6	3. 5.	3.4	3	3.2	13,111	•	2.9	2,88	2,77	2,65	2,54	2,43	2,32	2.21	2,10	12,000		8.1	1.78	1,67	1,57	1.46	1,36	1,25	1,15	1.05	.95	5	10.447	2	3	=	φ.	\$	Ξ.	8	ŝ	:	77	7.691	.27	86	440	6					
L0G(N(02) /M3)	_:	11,288	_:	ŏ	ਂ	ö	0	6	9.639	9.410	•	•	•	•	•	•	•	•	•	•	7,189	•	.97	• 76	6.547	33	.12																											
EMP LOG(N(N2) K /M3)	3.04	2.8	2,62	2.41	2,20	2.00	1.79	1.59	30	11,190	•	66	79	• 59	39	20	8	.8	- 62	4	9.245	,	٥.	86	68	49	3	13	94	76	58	3.	96.	6.527	60.																			
TEMP L	189.	191	192.	193,	194.	195.	195.	196	104	1197.2	•	197.	197.	198	198.	198.	198	198.	198	108	1199.0		199.	199.	199.	199.	199	199	199.	66	199	1199.5	199.	1199.7	199.	199.	199.	199.	199.	199.	199.	199.		199.	199.	199.	199.	200	200	200	200	1200.0	200	
HE I GHT KM	~	4	•	œ	0	~	•	· vo	α	009	,	620	940	099	680	700	720	740	760	780	800		N	4	ø	œ	0	N	•	•	æ	1000	5	1100	S	0	S	0	S	0	S	0		1600	1700	1800	Φ	0	_	2	3	2400	S	

EXOSPHERIC TEMPERATURE = 1300 K

HEIGHT KM	TEMP K	LOG (N (H2) /M3)	LOG(N(02) /M3)	LOG(N(O) /M3)	LOG (N(A) /M3)	LGG (N (HE)	LOG (N (H) /M3)	LOG(N /M3)	LOG (PRFSSURE NT/M2)	MEAN MCL WT	DENSITY SCALE HT KM	DENSITY KG/M3	LOG(DEN KG/M3)
90	188.0	19.746	19.170	17.390	17.824	14.573		19.854	-•732	28.91	5.63	3.43E-06	-5.465
92	188.1			17.547	17,669	14.418		19.700	886	28.85	5.58	2.40E-06	-5.620
94	188.6			17.646	17.514	14.263		19.545	-1.040	28.76	5.54	1.67E-06	-5.776
96				17,685	17.359	14.108		19.389	-1.193	28.65	5.52	1.17E-06	-5.933
	189.6			17.687	17.203	13.952		19.234	-1.344	28.52	5.52	8.12E-07	-6.091
98				17.664	17.048	13.797		19.080	-1.491	28.36	5.61	5.66E-07	-6.248
100 102	194.6 199.4		18.148	17.598	16.836	13.770		18,927	-1.633	28.21	5.60	3.96E-07	-6.403
102	206.7		17.970	17.540	16,625	13.741		18.775	-1.770	28.02	5.61	2.77E-07	-6.558
	217.3		17.789	17.482	16.416	13.709		18.623	€1.900	27.80	5.63	1.94E-07	-6.712
106 108	231.6			17.420	16.212	13.674		18.474	-2.021	27.55	5.71	1.36E-07	-6.866
108	231.0	10.30.	17,004	11.420		23.014		10.47	-2,02.		2.1.	.,50=-0.	,
110	249.9	18,213	17.418	17.352	16.014	13.637		18.328	-2.134	27.29	5.88	9.64E-08	-7.016
115	309.2		16.984	17,162	15.565	13.544		17.994	-2.375	26.68	6.95	4.37E-08	-7.359
120	375.3			16,976	15.192	13.463		17.719	-2.567	26.21	8.48	2.28E-08	-7.642
125	443.6	17.341	16.376	16,809	14.878	13.393		17.489	-2.724	25.84	9.99	1.32E-08	_7 .87 8
130	512.7	17,134	16,148	16,664	14,609	13.334		17.294	-2.856	25,50	11.68	8.33E-09	-8.079
135	580.2	16,954	15,950	16.538	14.375	13.282		17,126	-2.970	25.19	13.46	5.59E-09	-8,252
140	644.7	16,796	15.776	16,428	14.170	13.238		16.980	-3.071	24.90	15.31	3.954-09	-8.404
145	705.1	16.656	15.621	16.331	13.986	13.199		16.851	-3.161	24.63	17.22	2.906-09	-8.537
150	761.0	16.529	15.481	16.245	13.819	13.166	11.472	16.736	-3.242	24.37	19.16	2.20E-09	-8.657
155	811.9	16.414	15,353	16.167	13.667	13.136	11.413	16.633	-3.318	24.12	21.11	1.72E-09	-8.765
											22.02		0.043
160	858.1		15.236	16.096	13.526	13.109	11.361	16.539	-3.388	23.88	23.03	1.37E-09	-8.863
170	936.9		15.024	15,971	13.272	13.064	11.274	16.372	-3.516	23.42	26.73	9.17E-10	-9.038
180	1000.4			15.863	13.043	13.026	11.206	16.228	-3.632	22.98	30.17	6.45E-10	-9.190
190	1051.4			15.766	12.834	12.994	11.150	16.099	-3.739	22.57	33.31	4.71E-10	-9.327
200	1092.5			15.677	12.637	12.965	11.092	15.982	-3.840	22.17	36.21	3.53E-10	-9.452
210	1125.8			15.595	12,451	12.940	11.053	15.673	-3.935	21.78	38.78	2.70E-10	-9.568
220	1153.0			15.517	12.273	12.917	11.020	15.772	-4.026	21.41	41.17	2.10E-10	-9.677
230	1175.2			15.443	12.101	12.895	10.992	15.677	-4.113	21.06	43.37	1.665-10	÷9.779
240	1193.5			15.372	11.933	12.875	10,967	15.586	-4.197	20.72	45.42	1.33E-10	-9.877
250	1208.7	15.032	13,799	15,303	11.770	12.856	10.946	15.499	-4.278	20.39	47.32	1.07E-10	-9.971
260	1221.3	14.918	13,670	15.237	11.610	12.837	10,928	15,416	-4.357	20.08	49.12	8.69E-11	-10,061
270	1231.9			15.171	11.452	12.820	10.911	15.336	-4.434	19.78	50.81	7.11E-11	-10.148
280	1240.7			15.107	11.297	12.802	10.897	15.258	-4.508	19.49	52.43	5.86E-11	-10.232
290	1248.2			15.044	11.144	12.786	10.884	15.182	-4.581	19.22	53.96	4.86E-11	-10.314
300	1254.5			14.982	10.992	12.769	10.873	15,109	-4.653	18,97	55.45	4.05E-11	-10.393
310	1259.9			14.921	10.842	12.753	10.862	15.037	-4.723	18.73	56.87	3.39E-11	-10.470
320	1264.5		12,933	14.861	10.693	12.738	10.853	14,967	-4.791	18.50	58.24	2.85E-11	-10.546
330	1268.5			14,801	10.546	12.722	10.844	14.898	-4.859	18.28	59.55	2.40E-11	-10.620
340	1271.9		12.697	14.741	10.399	12.707	10.836	14.831	-4.925	18.08	60.83	2.03E-11	-10.692
350	1274.9		12,580	14.682	10.254	12.692	10.828	14.765	-4.990	17.89	62.06	1.73E-11	-10.762
		-	-										
360	1277.4			14,624	10.109	12,677	10.822	14,700	-5.054	17.72	63.25	1.47E-11	-10.832
370	1279.7			14.566	9.965	12.662	10.815	14.636	-5.117	17.55	64.39	1.26E-11	-10.900
380	1281.7			14,508	9.822	12.647	10.809	14.573	-5.179	17.39	65.49	1.08E-11	-10.967
390	1283.4			14.451	9.680	12.633	10.803	14.511	-5.241	17.24	66.55	9.28E-12	-11.032
400	1284.9	13,459	12,006	14.394	9.538	12.618	10.798	14.449	-5.302	17.10	67.57	7.99E-12	-11.097

EXOSPHERIC TEMPERATURE = 1300 K

L0G (DEN KG/M3)	-11,224 -11,347 -11,468 -11,586	11.926 -12.036 -12.144 -12.251	0.000000000000000000000000000000000000	113 22 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	11140 111444 111444 111446 11146 11	115.062 115.062 115.062 115.062 115.035 115.062 115.063 115.063
DENSITY KG/M3	5.976-12 3.416-12 2.606-12 1.996-12		4,400 F 13	4,300 3,300 2,200 2,200 1,588 1,588 1,166	7.25E.15 3.44E.15 3.44E.15 3.65E.15 2.65E.15 2.67E.15 1.660E.15 1.660E.15	1006 1006
DENSITY SCALE HT KM	71.28 71.28 72.93 74.45 75.86	78.45 79.65 80.81	883.11 864.28 865.49 865.49 865.10 899.10 901.18 901.18	99,58 102,36 105,50 109,06 1113,09 117,64 122,76 128,51 14,93	163.18 188.93 218.53 220.36 282.47 312.92 340.35 364.15	428.94 486.94 486.98 503.67 521.24 559.16 579.65
MOL WT	16.62 16.62 16.62 16.21 16.01	น พ.พ.พ. ๔	11111111111111111111111111111111111111	010 0010 000 0000 0000 0000 0000 0000	0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	88888888888888888888888888888888888888
LOG (PRESSURE NT/M2)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10000000000000000000000000000000000000	.66.680 .66.680 .66.680 .66.871 .66.858 .77.0024 .77.102	17.9316 17.9440 17.9440 17.9497 17.951 17.9694 17.797	- 7 - 862 - 7 - 862 - 7 - 940 - 8 - 1010 - 8 - 194 - 8 - 196 - 8 - 345 - 8 - 345	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
L06(N	14.329 14.212 14.097 13.984 13.874	. 4	13.255 13.255 13.067 12.889 12.722 12.569 12.569	12.366 12.366 12.306 12.306 12.195 12.195 12.098 12.053 12.012	11.886 111.886 111.736 111.672 111.556 111.556 111.451 111.353	111.260 111.172 111.008 110.093 10.795 10.755 10.666
LOG (N (H)	10,787 10,778 10,769 10,761 10,753	10,738 10,731 10,724 10,717	10.710 10.703 10.696 10.689 10.683 10.670 10.663	100.644 100.638 100.632 100.619 100.613 100.601 100.601	10.574 10.556 10.545 10.517 10.517 10.490 10.463	10.424 10.399 10.375 10.375 10.328 10.283 10.261 10.261
LOG (N (HE) /M3)	12.590 12.561 12.533 12.505 12.478		12,317 12,290 12,238 12,238 12,13 12,187 12,167 12,136 12,111	12,061 12,037 12,012 11,988 11,963 11,915 11,8915 11,867	11.785 11.7285 11.671 11.651 11.559 11.759 11.397 11.344	11.190 11.091 10.899 10.807 10.717 10.529 10.543
LOG (N (A) /M3)	9.256 8.977 8.700 8.424 8.151		6.549 6.028 6.028			
LOG(N(O)	14.280 14.168 14.057 13.946	. 40 10 4 40	13.194 13.089 12.985 12.677 12.577 12.575 12.374 12.374	12.174 11.9076 111.8978 111.8880 111.5980 111.5990 111.400	110.071 100.8613 100.388 100.167 99.735 99.519 99.519	8.000 8.000 7.000 7.000 7.000 6.000
L0G(N(02) /M3)	11.780 11.557 11.334 11.114	2000	9.611 9.602 9.194 9.194 8.7987 8.3374 7.971	6.2.4.9 6.0.4.9 6.0.4.9 6.0.4.9 6.0.4.9 6.0.4.9 6.0.13		
TEMP LOG(N(N2) K /M3)	13.261 13.065 12.870 12.677 12.677	27.01.	11.362 11.178 110.996 10.815 10.635 10.278 10.101 9.926	99-557-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7	7. 4. 5. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	
	1287.5 1289.5 1291.1 1292.4 1293.5	9 9 9 9 9	1297.0 1297.5 1297.6 1297.8 1298.1 1298.2 1298.4 1298.5	1298.9 1299.0 1299.0 1299.1 1299.2 1299.2 1299.3 1299.4	1299.5 1299.6 1299.7 1299.7 1299.8 1299.8 1299.8	1299.9 1299.9 1299.9 1299.9 1299.9 1290.0 1300.0 1300.0
HE I GHT KM	4 4 4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	620 640 660 680 700 720 740 760 780	820 840 860 880 900 920 940 960	1050 1150 1150 1250 1250 1350 1450 1450	1600 1700 1800 1900 2000 2200 2300 2400 2500

EXOSPHERIC TEMPERATURE = 1400 K

LOG MEAN . DENSITY PRESSURE **HEIGHT** TEMP LOG(N(N2) LOG(N(O2) LOG(N(O) LOG(N(A) LOG(N(HE) LOG(N(H) LOG(N MOL WT SCALE HT DENSITY LOG (DEN /M31 /M3) /M31 /M3) NT/M2) KG/M3 KG/M3) ΚM /M3) /M3) /Ma) KM 188.0 19.746 19.170 17.390 17.824 14.573 19.854 -.732 28.91 5.63 3.43E-06 -5.465 2.40E-06 92 19.592 19.009 17,547 17.669 14.418 19.700 28.85 5.58 188.1 -.886 -5.620 94 19.436 18.843 17.646 17.514 14.263 19.545 28.76 5.54 1.67E-06 -5.776 188.6 -1.040 17.359 19.389 1.17E-06 8.11E-07 -5.933 96 189.7 19.281 18.672 17.685 14.108 -1.193 28.65 5.52 17.203 191.6 19.125 18,498 17,687 13.952 19.234 28.52 5.52 -6.091 -1.344 100 18.970 17.664 17.048 13.797 19.079 5.60 5.65E-07 -6.248 194.8 18.322 -1.491 28.36 13.770 3.95E-07 102 199.9 18.818 18.147 17.598 16.835 18.926 -1.633 28.21 5.59 -6.403 13.740 2.77E-07 104 207.4 18.665 17.970 17.539 16.624 18.774 -1.769 28.02 5.60 -6.558 1.94E-07 16.416 18.623 -1.898 106 218.3 18.512 17.789 17.481 13.708 27.81 5.63 -6.713 17.418 1.36E-07 108 233.2 18,360 17.604 13.672 -2.019 5.70 -6.867 27.56 110 252.1 18.212 17.417 17.350 16.014 18.327 27.29 5.88 9.62E-08 -7.017 13.635 -2.131 115 313.6 17.870 16.985 17.159 15.567 13.541 17.994 -2.370 26.69 6.97 4.37E-08 -7.360 17.585 17.345 2.28E-08 120 382.1 16.649 16.973 15.197 13.459 17.720 17.492 -2.558 26.23 8.53 -7.641 1.33E-08 13.390 125 452.9 16.382 16.807 14.886 -2.712 25.87 10.08 -7.875 8.43E-09 5.68E-09 17.298 130 17,140 16,156 16,663 14,621 13.330 25.54 11.80 -8.074 524.6 -2.842 15,960 16.538 14.391 13.278 17.132 25.24 13.60 -8.246 135 594.9 16.962 -2,954 4.02E-09 16.429 14.188 15.47 -8.395 140 662.5 16.806 15,789 13.234 16.987 -3.052 24.96 2.97E-09 16,332 14,007 145 726.5 16,667 15,636 13,195 16.860 -3.139 24.70 17,40 -8.528 2.26E-09 1.77E-09 16.746 -8.646 150 786.2 16.542 15,498 16,246 13.844 13.161 11,396 -3.219 24.44 19.37 15,372 155 841.4 16,428 16,169 13.694 13.130 11.336 16.643 -3.292 24.21 21.36 -8,753 891.8 16,324 15.257 16,098 13.557 13.103 11.284 16.550 -3.359 23.98 23.34 1.41E-09 -8.850 160 9.51E-10 6.74E-10 170 979.4 16,138 15.050 15,975 13.308 13.057 11.197 16.386 -3.483 23.54 27.19 -9.022 13.087 180 1051.1 15.974 14.866 15,867 13.019 11.128 16.244 -3.594 23,13 30.85 -9.172 14.700 4.95E-10 190 1109.3 15,825 15.772 12.885 12.987 11.072 16,118 -3.697 22,73 34.23 -9.305 200 1156.8 15,688 14,546 15,686 12.697 12.958 11,013 16,004 -3.793 22.36 37.38 3.75E-10 -9.426 2.89E-10 2.27E-10 210 1195.5 15,559 14,401 15,607 12,519 12.933 10.973 15.899 -3.883 21.99 40.19 -9.538 220 1227.1 15.437 14.263 15,532 12.350 12,910 10.938 15.801 42.81 -3.970 21.64 -9.643 1253.1 15,320 15.461 15.393 12,187 1.81E-10 230 14,130 12.889 10,909 15,710 -4.052 21.30 45.21 -9.742 1.46E-10 1.19E-10 15,207 12,029 12.870 240 1274.6 14.002 10.884 15,623 -4.132 20.98 47.44 -9.835 1292.4 15,328 250 15.097 13.878 11.875 12.851 10.862 15.539 -4.209 20.67 49.50 -9.925 260 1307.3 14,990 13,756 15,265 11.725 12.834 10.843 15,460 -4.284 20.36 51.44 9.75E-11 8.05E-11 -10.011 53.25 270 1319.7 13,637 15,203 11.577 -10.094 14.885 12.817 10.826 15,383 -4.356 20.08 6.69E-11 280 1330.1 14.782 15.143 11.432 15.309 54.98 -10.174 13.520 12.800 10.811 -4.427 19.80 290 1338.9 15.084 11.288 10.798 15.237 5.60E-11 -10.252 13.405 12.784 -4.496 19.54 56.61 14.681 300 1346.3 14.581 13.291 15,026 11.147 12.769 10.786 15.167 -4.564 19.28 58.18 4.70E-11 -10.328 3.97E-11 310 1352.7 14.482 13.178 14.969 11.007 12.754 10.775 15.099 19.04 59.68 -10,401 -4.630 3.36E-11 -10,473 320 1358.1 14.384 13,067 14,912 10.868 12,739 10.765 15.032 -4.695 18.82 61.13 2.86E-11 2.44E-11 2.09E-11 10.730 10.756 -4.759 -10.544 330 1362.8 14,287 12,956 14.856 12.724 14.967 18.60 62.51 10.594 -10.612 340 1366.9 14.191 12.847 14.800 12.710 10.748 14.903 -4.822 18.40 63.87 1370.3 -10,680 350 14,096 12.738 14,745 10.458 12.696 10.740 14.840 -4.883 18.20 65.17 360 1373.4 14,001 12,630 14,691 10.323 12.682 10.733 14.778 -4.944 18.02 66.44 1.80E-11 -10.746 370 1376.0 13,907 12.522 14,637 10.189 12.668 10,726 14.718 -5,004 17.85 67.66 1.55E-11 -10.810 1.34E-11 380 1378.4 13,813 12,415 14.583 10.056 12.654 10.720 14.658 -5.063 17,69 68.84 -10.874 -5.121 1.16E-11 390 1380.4 13.720 12,309 14,530 9.923 12.641 10.714 14.599 17.53 69.99 -10,937 400 9.792 1382.2 13,627 12,203 14.476 12.627 10.709 14.541 -5.178 17.39 71.09 1.00E-11 -10.998

... ţ

EXOSPHERIC TEMPERATURE = 1400 K

L0G (DEN KG/M3)	-111.236 -111.350 -111.350 -111.571 -111.7678 -111.9887	12,188 12,286 12,286 12,438 12,572 12,565 12,865 13,935 13,935	13,101 113,101 113,274 113,274 113,509 113,563 113,655 113,724	-13,946 -14,085 -14,207 -14,314 -14,408 -14,564 -14,691	114.852 114.948 115.039 115.209 115.200 115.200
DENSITY KG/M3	7.6616-12 7.6616-12 3.466-12 2.696-12 1.6566-12 1.0366-12 1.036-12 1.046-12	65 113 12 12 12 12 12 12 12 12 12 12 12 12 12	7.81E.14 5.93E.14 9.69E.14 9.69E.14 2.61E.14 1.89E.14 1.682E.14	1.00	11.00 10 10 10 10 10 10 10 10 10 10 10 10 1
DENSITY SCALE HT KM	73.19 75.16 76.99 78.70 80.29 81.78 83.17 84.50	88.21 89.40 90.59 91.80 93.06 94.36 97.22 97.22	102,44 106,84 106,84 112,29 115,29 119,09 123,10	147.54 166.56 189.88 217.19 247.68 312.07 342.70 395.63	435.83 4666.10 528.00 528.00 5546.05 568.37 610.25
MCL WT	17.12 16.88 16.88 16.64 16.26 115.92 115.92 115.56	112.888 112.80 113.888 113.888 113.888 112.80 112.80	111.96 111.051 111.051 100.10 9.62 9.62 9.15 8.69 8.25 7.83	44444444444444444444444444444444444444	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
LOG (PRESSURE NT/M2)	55.291 55.291 55.601 55.615 55.821 55.821 55.821 56.016	166 9305 166 9396 166 9485 166 953 166 961 166 961 166 961 166 961	-7.120 -7.187 -7.313 -7.313 -7.371 -7.426 -7.479 -7.528	17.718 17.8805 17.8805 17.8805 18.013 18.013 18.175 18.225	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LOG (N /M3)	14.28 14.28 14.208 14.208 13.895 13.595 13.596	133.410 133.410 133.729 133.729 112.8973 112.8973 112.8973 112.4813 112.438	12.5594 12.5524 12.5524 12.5546 12.345 112.788 112.786 112.139 12.139	11. 9996 11. 9996 11. 932 11. 764 11. 589 11. 538 11. 538	11.350 11.764 11.182 11.028 10.956 10.956 10.782 10.697
LOG (N(H)	10.698 10.689 10.689 10.689 10.665 10.658 10.631	10.623 10.617 10.617 10.604 10.598 10.586 10.580 10.574	10.562 10.556 10.556 10.556 10.539 10.533 10.528 10.528 10.516	10.497 10.484 10.470 10.477 10.444 10.444 10.408 10.394 10.382	10.358 10.334 10.312 10.258 10.247 10.226 10.206 10.166
LOG(N(HE) /M3)	12.601 12.541 12.548 12.522 12.496 12.471 12.421 12.396 12.396	12,347 12,322 12,298 12,250 12,250 12,203 12,179 12,179 12,156	12,109 12,087 12,064 12,041 12,018 11,996 11,996 11,951 11,929	11.883 111.800 111.747 111.694 111.6643 111.6643 111.642 111.644	111.301 11.208 11.018 11.019 10.845 10.865 10.699 10.699
LOG (N(A) /M3)	9.530 9.0270 9.0270 9.0270 8.0272 7.051 7.051 7.051	7.014 6.771 6.530 6.290 6.052			•
LCG(N(0)	14.371 14.266 14.266 14.063 13.958 13.857 13.657 13.558	13.361 13.264 13.167 13.071 12.976 12.881 12.598 12.699 12.599	12, 414 12, 323 12, 231 12, 141 12, 051 11, 961 11, 783 11, 695	11, 390 11, 176 10, 964 10, 756 10, 550 10, 146 9, 948 9, 753	9.182 8.813 8.453 8.101 7.424 7.429 7.4097 6.778 6.160
LOG(N(02) /M3)	11, 993 11, 785 11, 579 11, 579 11, 374 10, 968 10, 568 10, 568 10, 370	99.04.04.04.04.04.04.04.04.04.04.04.04.04.	0.084 7.99084 7.99084 7.9334 7.1937 7.1937 7.1937 6.8828 6.8828 6.8828 6.8828	6. 036	
LOG (N (N2)	13.443 13.443 13.0861 12.901 12.723 12.346 12.195 12.022 11.850	11.554 11.554 11.359 11.139 10.6632 10.5632 10.3645 10.3645	10 9.00 9.10 9.10 9.34 9.34 9.02 9.02 8.01 8.01	8.227 7.852 7.852 7.117 6.756 6.050	
TEMP L	138875.2 138875.2 13990.5 13991.0 13994.2 13995.3 13995.0	1396.5 1396.5 1397.5 1397.7 1397.9 1398.1 1398.6	13988.4 13988.8 13998.0 13999.0 13999.2 13999.2 13999.3	13999.5 13999.5 13999.6 13999.7 13999.7 13999.8 13999.8	1399.9 1399.9 1399.9 1399.9 1399.9 1399.9 1400.0 1400.0
HE I GHT KM	44444444444444444444444444444444444444	620 660 680 720 720 740 780	8820 8860 9900 9940 9960 1000	100 1150 1150 1250 1350 1450 1450	1600 1700 1800 2000 2200 2300 2300 2500 2500

EXOSPHERIC TEMPERATURE = 1500

17.873 18.070 18.240 18.388 18.519 18.636 LOG(DEN KG/M3) -10.671 -10.733 -10.793 -10.853 1.456.09 6.996.10 5.996.10 3.946.10 2.496.10 1.956.10 1.596.10 10.08 10 2.13E-11 1.85E-11 1.61E-11 1.23E-11 3.43E.06 2.40E.06 1.67E.06 1.17E.06 8.11E.07 2.65E.07 1.93E.07 1.93E.07 DENSITY KG/M3 MEAN DENSITY MOL WT SCALE HT KM 41.48 44.33 46.94 49.37 51.60 10.16 13.73 15.62 17.56 17.56 19.56 18.69 18.69 24.06 23.55 23.56 22.88 22.88 22.52 22.17 21.86 21.82 21.52 18.31 18.14 17.97 17.82 17.67 28.91 28.91 28.95 LOG (PRESSURE 1 NT/M2) 13.034 13.120 13.128 -1,193 -1,344 -1,6491 -1,632 -1,768 -.732 -.886 -1.040 ~2.829 ~2.939 -4.610 m4.67l -3.561 -4.42] 15.424 115.284 115.284 115.217 115.088 115.026 14.965 14.846 14.789 14.732 14.676 14.621 18.326 17.993 17.720 17.494 17.302 17.137 16.994 16.867 16.653 16.134 15.921 15.825 15.826 15.737 15.553 LOG(N(A) LOG(N(HE) LOG(N(H) LOG(N /M3) /M3) /M3) /M3) 11.214 11.127 11.057 11.000 10.940 10.864 10.864 10.835 10.809 10.767 10.749 10.720 10.720 10.696 10.686 10.668 10.668 10.653 10.639 10.633 10.633 11,327 12.685 12.672 12.659 12.647 12.634 12.864 12.846 12.797 12.782 12.767 12.753 12.739 12.725 14.573 14.418 14.263 13.952 13.796 13.799 13.739 13,052 3,013 12.927 12,904 12,883 3.098 12.980 12,952 2.813 12.747 12.577 12.415 12.260 12.111 11.965 11.412 11.279 11.148 10.888 10.760 10.633 10.507 10.382 10.257 10.133 17.8269 117.8569 117.859 117.8 14,405 14,205 14,026 13,865 13,718 2.929 16.014 15.569 15.201 1,547 14.894 14,632 11.017 LOG (N (O) 17.348 117.157 116.971 116.805 116.662 116.538 116.729 116.333 116.247 15.671 15.6738 15.6693 15.6738 15.473 15.473 15.288 15.230 15.173 15.062 15.008 14.955 14.902 14.850 14.798 14.747 14.697 14.646 14.596 14.546 17.645 17.685 17.686 17.664 17.597 17.538 17.479 TEMP LOG(N(NZ) LOG(N(02) K /M3) 117-6-985 116-985 116-985 116-162 116-969 116-649 117-649 117-989 117-989 117-989 117-989 14.889 14.582 14.582 14.9462 14.086 18.069 19,170 19,009 18,643 18,642 18,498 18,322 18,147 17,969 17,603 15.275 13.830 13.607 13.608 13.698 13.286 13.181 13.077 12.975 12.571 12.671 12.571 12.471 12.372 15.051 14.0552 14.0553 14.0553 14.0553 14.0573 15.0573 15.0573 15.0573 15.0573 15.0573 15.0573 15.0573 15.0573 14.121 14.033 13.946 13.858 13.772 16,339 16,155 15,994 17.586.01.17.3586.01.17.3586.01.17.3586.01.14588.01.1458.0188.0188.01880.01880.01880.01880.01880.01880.01880.01880.01880.01880.01880.01880.018 199.746 199.746 199.7436 199.125 199.125 189.940 189.811 189.811 189.859 923.2 1019.2 1099.0 1164.7 1218.7 1299.4 1329.4 1354.3 1374.9 254.2 388.4 461.6 555.6 608.5 678.9 746.2 809.5 868.6 188.0 188.1 188.1 189.7 191.7 195.0 200.2 208.1 219.3 263.0 HE I GHT KM

EXOSPHERIC TEMPERATURE = 1500 K

LOG (DEN KG/M3)	11111111111111111111111111111111111111	112.05.00 112.05.00 112.05.00 112.05.00 112.05.00 112.05.00 112.05.00 112.05.00 112.05.00 112.05.00 112.05.00 112.05.00	11111111111111111111111111111111111111	4444 44400000000
DENSITY KG/M3	7.24 7.24 7.24 7.24 7.24 7.24 7.24 7.24	74.00 74	11.0.2.2.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	00000
DENSITY SCALE HT KM	76.75 80.83 80.83 82.87 84.51 84.51 89.20 90.60	93.23 94.50 95.74 95.74 96.97 99.76 100.76 103.52	106.60 1008.30 1008.30 1112.11 1116.30 1116.80 1125.69 125.69 125.69 125.69 140.05 153.80 171.06 171.06 171.06	276,83 3419,24 342,64 342,64 4470,34 4470,34 552,83 552,83 552,83 664,44 667,84
MEAN MCL WT	117. 116. 116. 116. 116. 116. 116. 116.	11111111111111111111111111111111111111	1111122. 10011111122. 1001111111122. 1001111111122. 1001111111111	4444 wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
LOG (PRESSURE NT/M2)	6 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	** 66.215 ** 66.215 ** 66.311 ** 66.479 ** 66.659 ** 66.710 ** 66.710	**6***********************************	00 24444688
LOGIN	14.513 14.501 14.004 14.006 11	13.547 13.460 13.340 13.207 13.107 13.107 12.907 12.907 12.8095	12.5.583 112.5.583 112.5.583 112.5.583 112.5.324 112.5.324 112.5.325 113.5.33 111.6933 111.791 111.791	
LOG(N(H)	10.617 10.5599 10.5591 10.5591 10.5547 10.5547 10.554	100.534 100.534 100.532 100.526 100.520 100.509 100.609	10°488 10°445 10°4475 10°4449 10°4449 10°4449 10°4449 10°449 10°449 10°400 10°400 10°338	
LOG(N(HE) /M3)	12.609 12.564 12.560 12.535 12.611 12.488 12.441 12.411	12,371 12,349 12,326 12,304 12,281 12,281 12,237 12,237 12,215	12.150 12.128 12.004 12.005 12.005 12.002 12.002 11.982 11.961 11.861 11.811 11.811 11.811	
LDG (N (A) 7/43)	0.000000000000000000000000000000000000	7.4.16 7.186 6.9464 6.518 6.296		
LOG (N (O)	14, 354 14, 354 14, 253 14, 253 14, 262 13, 864 13, 688 13, 688	13.504 13.504 13.323 13.234 13.144 12.968 12.793 12.793	12.620 12.535 12.535 12.365 12.365 12.197 12.031 11.867 11.267 11.267 11.267 11.267	10.503 10.310 10.310 10.310 9.350 9.250 9.250 9.250 9.250 7.350 7.350 7.058 6.350 7.058
LOG (N (02)	12.176 11.981 11.789 11.597 11.607 11.0218 11.031 10.865 10.660	10.293 10.112 9.931 9.752 9.574 9.297 9.297 9.298	68 88 88 88 88 88 88 88 88 88 88 88 88 8	
LOG (N (NZ)	13.600 13.260 13.260 13.093 12.761 12.597 12.434 12.272	11.951 11.951 11.634 11.321 11.10.166 10.858	1100.254 1100.254 1100.254 1100.254 1100.254 1100.256 110	0 W O O O O O O O O O O O O O O O O O O
TEMP LC	1485.8 1485.5 1487.8 1491.0 1492.2 1493.2 1494.1 1494.8	1495,9 1496,3 1497,0 1497,0 1497,6 1497,8 1498,0 1498,0	1498.5 1498.6 1498.7 1499.8 1499.8 1499.8 1499.5 1499.5 1499.6 1499.6 1499.6 1499.6	• • • • • • • • • • • • • • • • • • •
HE I GHT KM	44440000000000000000000000000000000000	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8820 8840 9980 9980 1000 11100 11250	W44W

EXOSPHERIC TEMPERATURE = 1600 K

HEIGHT KM	TEMP K	LOG (N (N2) /M3)	LOG(N(02) /M3)	LOG(N(O) /M3)	LOG(N(A) /M3)	LOG(N(HE) /M3)	LOG (N(H) /M3)	LOG(N /M3)	LOG (PRESSURE NT/M2)	MEAN MOL WT	DENSITY SCALE HT KM	DENSITY KG/M3	LOG (DEN KG/M3)
90	188.0	19.746	19,170	17.390	17.824	14.573		19.854	732	28.91	5.63	3.43E-06	-5.465
92	188.1			17.547	17.669	14.418		19.700	886	28.85	5.58	2.40E-06	
94	188.7			17.645	17.514	14.263		19.545	-1.040	28.76	5.54	1.67E-06	-5.776
96	189.8	19.281	18,672	17.685	17.359	14.108		19.389	-1.193	28.65	5.51	1.17E-06	-5.933
98	191.8		18.498	17.686	17.203	13.952		19.234	-1.343	28.52	5.51	8.11E-07	-6.091
100	195.2	18,969	18.322	17.663	17.047	13.796		19.079	-1.491	28.36	5.60	5.64E-07	-6.248
102	200.6		18.147	17.597	16.835	13.769		18.926	-1.632	28.21	5.58	3.95E-07	-6.404
104	208.7	18.664	17.969	17.537	16.624	13.739		18.773	-1.768	28.03	5.59	2.76E-07	-6.559
106	220.2	18.511	17.788	17,478	16.415	13.706		18.621	-1.896	27.81	5.62	1.93E-07	-6.714
108	236.0	18,359	17.603	17.416	16.211	13.670		18.471	-2.016	27.56	5.70	1.36E-07	
110	256.2		17.416	17.346	16.015	13.631		18.325	-2.126	27.30	5.88	9.59E-08	-7.018
115	321.5		16.985	17.155	15.571	13.536		17,993	-2.360	26.71	7.01	4.36E-08	-7.360
120	394.3		16.654	16.969	15.206	13.453		17.721	-2.543	26.26	8.63	2.29E-08	-7.640
125	469.6		16,390	16.804	14.901	13.383		17,496	-2.693	25.91	10.24	1.35E-08	-7.871
130	545.8		16.169	16.661	14.642	13.323		17.305	-2.818	25.60	12.01	8.59E-09	-8.066
135	621.0		15.978	16.537	14.417	13.271		17.142	-2.925	25.32	13.85	5.83E-09	-8,235
140	694.1		15.810	16.429	14.220	13.226		16.999	-3.019	25.05	15.75	4.15E-09	-8.381
145	764.4		15.660	16.334	14.043	13.187	11 0/0	16.874	-3.103	24.81	17.71	3.08E-09	-8.511
150 155	831.1		15.526	16.248	13.885	13.152	11.263	16.762	-3.179	24.57	19.71	2.36E-09	-8.628
	893.8	-	15.404	16.171	13,740	13.121	11.203	16.661	-3.248	24.35	21.75	1.85E-09	-8,732
160	952.3		15.291	16,102	13.607	13.094	11.150	16.569	-3.312	24.14	23.80	1.49E-09	-8.828
170	1056.5		15.091	15.979	13.368	13.046	11.062	16.408	-3.428	23.73	27.91	1.01E-09	-8.996
180	1144.4		14.916	15.874	13.157	13.007	10.992	16.270	-3.532	23.36	31.91	7.22E-10	-9.142
190	1217.6		14.758	15.781	12.967	12.974	10.934	16.148	-3.626	23.00	35.73	5.37E-10	-9.270
	1278.3	15.741	14.613	15.698	12.792	12.946	10.874	16.039	-3.715	22.66	39.36	4.11E-10	-9.386
210	1328.4	15.621	14.478	15.623	12.628	12.920	10.832	15.939	-3.798	22.33	42.64	3.22E-10	-9.492
220	1369.9	15.509	14.351	15.553	12,472	12.898	10.797	15.847	-3.876	22.02	45.73	2.57E-10	-9.590
230 240	1404.1	15.401 15.299	14.231	15.487	12.324	12.877	10.766	15.761	-3.952	21.71	48.56	2.08E-10	-9.682
250	1456.2		14.114	15.424	12.181 12.043	12.859	10.740	15.680	-4.024	21.42	51.19	1.70E-10	-9.769
		-	14.002	15.365		12.841	10.717	15.603	-4.094	21.13	53.60	1.41E-10	-9.852
260	1475.9	15.103	13.893	15.307	11.908	12.825	10.697	15.529	-4.162	20.85	55.85	1.17E-10	-9.931
	1492.5	15.009	13.786	15.251	11.776	12.809	10.679	15.458	-4.228	20.59	57.93	9.82E-11	-10.008
	1506.4	14.917	13.682	15.197	11.647	12.794	10,663	15.390	-4.292	20.33	59.89	8.29E-11	-10.081
	1518.1	14.827	13.579	15.144	11.519	12.779	10.649	15.324	-4.354	20.08	61.73	7.03E-11	-10.153
	1528.1	14,738	13.478	15.092	11.394	12.765	10.636	15.260	-4.416	19.84	63.49	5.99E-11	-10.222
310	1536.6	14.650	13.378	15.041	11.270	12.751	10.624	15.198	-4.476	19.61	65.15	5.13E-11	-10.290
	1543.9	14.564	13.280	14.991	11.147	12.738	10.614	15.137	-4.535	19.39		4.41E-11	-10.356
330	1550.2	14.478	13.182	14.941	11.026	12.725	10.604	15.077	-4.592	19.18	68.29	3.80E-11	-10,420
340	1555.6	14.393	13.085	14.892	10.905	12.712	10.595	15.019	-4.649	18.97	69.78	3.29E-11	-10.483
350	1560.3	14.309	12,989	14,843	10.786	12.700	10.587	14.962	-4.705	18.78	71.21	2.85E-11	-10.544
360	1564.3	14,225	12.894	14.795	10.667	12.687	10.579	14.906	-4.760	18.59	72.60	2.48E-11	-10,605
370	1567.9	14.143	12.799	14.747	10.549	12.675	10.572	14.851	-4.814	18.42	73.96	2-17E-11	-10.664
380	1571.0	14.060	12.705	14.700	10.432	12.663	10.566	14.796	-4.867	18.25	75.28	1.90E-11	-10.722
	1573.7	13.978	12.612	14.653	10.316	12.651	10.559	14.743	-4.920	18.09	76.56	1.66E-11	-10.779
400	1576.1	13.897	12,519	14.606	10,200	12.639	10.553	14.690	-4.972	17.93	77.80	1.46E-11	-10.836

c

HE I GHT KM	TEMP K	LOG (N (N2) /M3)	LOG(N(O2) /M3)	LUG(N(O) /M3)	LOG(N(A) /M3)	LOG(N(HE)	LOG (N(H)	LOG(N /M3)	LOG (PRESSURE NT/M2)		DENSITY SCALE HT KM	DENSITY KG/M3	LOG(DEN KG/M3)
420	1580.2	13.735	12,335	14,513	9.970	12.615	10.543	14.587	-5.074	17.65	80.19	1.13E-11	-10,946
440	1583.3		12.152	14.421	9.742	12.592	10.533	14.487	-5.173	17.39	82.46	8.86E-12	-11.052
460	1585.9		11.971	14.331	9.516	12.569	10.524	14.389	-5.271	17.16	84.61	6.98E-12	-11,156
480	1588.0		11,791	14,240	9.292	12.546	10.516	14.293	-5.366	16.94	86.65	5.52E-12	-11.258
500	1589.7		11,613	14,151	9.070	12,523	10.510	14.199	-5.460	16.75	88.57	4.40E-12	-11.357
520	1591.0		11,436	14.062	8.849	12.501	10.503	14.106	-5.552	16.57	90.39	3.51E-12	-11.454
540	1592.2	12.794	11.260	13,974	8.629	12.479	10.497	14.016	-5.642	16.40	92.10	2.82E-12	-11.549
560	1593.2	12.641	11.085	13.887	8.411	12.457	10.490	13.927	-5.731	16.23	93.72	2.28E-12	-11.643
580	1594.0		10.912	13.800	8.195	12.435	10.484	13.839	-5.819	16.08	95.26	1.84E-12	-11.735
600	1594.7	12.338	10,740	13.714	7.980	12,413	10.477	13.753	-5.905	15.92	96.74	1.50E-12	-11.825
620	1595.3		10.568	13,628	7.766	12.392	10.471	13.668	-5.989	15.77		1.22E-12	-11.914
640	1595.8		10.398	13,543	7.553	12.371	10.465	13.584	-6.073	15,61	99.52	9.95E-13	-12,002
660	1596.2		10,229	13,458	7.342	12.349	10.460	13.502	-6.155	15.44	100.84	8.15E-13	-12.089
680	1596.6		10.061	13.374	7.132	12.328	10.454	13,421	-6.235	15.27	102.13	6.69E-13	-12.174
700	1596.9		9.894	13.290	6.924	12.307	10.448	13.342	-6.315	15.09	103.41	5.51E-13	-12.259
720	1597.2		9.727	13.207	6.716	12.287	10.443	13.264	-6.393	14.90	104.69	4.55E-13	-12.342
740 760	1597.5		9,562 9,398	13.125 13.042	6.510 6.305	12.266 12.245	10.437 10.432	13.188	-6.469 -6.544	14.70 14.48	105.97 107.28	3.76E-13 3.12E-13	-12.425 -12.506
780	1597.9		9.235	12,961	6.101	12.225	10,427	13.039	-6.617	14.24	108.61	2.59E-13	-12.587
800	1598.1		9.072	12.880	0,101	12.204	10.421	12.968	-6.689	13.99	110.02	2.16E-13	-12.666
				-						_	-	-	
820	1598.2		8.911	12.799		12.184	10.416	12.898	-6.758	13.71	111.44	1.80E-13	-12.745
840	1598.4		8.750	12,719		12.164	10.411	12.A30	-6.827	13.42	112.94	1.51E-13	-12.822
860	1598.5		8.591	12.639		12.144	10.406	12.764	-6.893	13.11	114.54	1.26E-13	-12.899
880	1598.6		8.432	12.559		12.124	10.401	12,699	-6.957	12.78	116.24	1.06E-13	-12.974
900	1598.7		8.274	12.481		12.105	10.396	12.637	-7.019	12.44	118.06	8.95E-14	-13.048
920 940	1598.8		8.117 7.961	12,402 12,324		12.085 12.065	10.391	12.577	-7.079 -7.137	12.07 11.70	120.03 122.16	7.57E-14 6.42E-14	-13.121 -13.193
	1599.0		7.806	12.246		12.046	10.381	12,463	-7.193	11.31	124.47	5.46E-14	-13.263
980	1599.0		7.652	12.169		12.027	10.376	12,410	-7.247	10.91	126.99	4.65E-14	-13.332
1000	1599.1		7.498	12.092		12.007	10.371	12.358	-7.298	10.51	129.74	3.98E-14	-13,400
				_		-							
1050	1599.2		7.118	11.902		11.960	10.359	12.239	-7.417	9.51	137.81	2.745-14	-13.562
1100	1599.3		6.743	11.715		11.913	10.347	12.134	-7.522	8.54	147.97	1.93E-14 1.39E-14	-13.715
1150 1200	1599.4		6.373 6.008	11.530 11.347		11.867 11.821	10.335 10.324	12.040 11.957	-7.616 -7.699	7.66 6.88	160.70 176.46	1.04E-14	-13.856 -13.985
1250	1599.6		0.008	11.167		11.776	10.313	11.957	-7.773	6.23	195.68	7.91E-15	-14.102
1300	1599.6			10.990		11.731	10.301	11.817	-7.839	5.70	218.52	6.21E-15	-14,207
1350	1599.7			10.814		11.688	10.290	11.757	-7.899	5.27	244.87	5.00E-15	-14.301
1400	1599.7			10.641		11.644	10.279	11.702	-7.954	4.93	274.24	4.12E-15	-14.385
1450	1599.7			10,470		11.601	10.268	11.651	-8.005	4.67	305.84	3.47E-15	-14.460
1500	1599.8			10,301		11.559	10.258	11.603	-8.053	4.47	338.57	2.97E-15	-14.527
1600	1599.8	ì		9.970		11.476	10.237	11,513	-8.143	4.19	402.66	2.27E-15	-14.644
1700	1599.8			9.647		11.396	10.217	11,431	-8.225	4.02	459.35	1.80E-15	-14.745
1800	1599.9			9.332		11,317	10.197	11,353	-8.303	3.91	505.55	1.46E-15	-14.835
1900	1599.9			9.025		11.240	10.177	11.278	-8.377	3.83	542.36	1.212-15	-14.918
2000	1599.9			8.725		11.165	10.158	11,207	-8.449	3.77	572.01	1.01E-15	-14,996
2100	1599.9			8,432		11.092	10.140	11.138	-8.517	3.73	596.73	8.51E-16	-15.070
2200	1599.9			8.146		11.020	10.122	11.072	-8.584	3.68	618.70	7.22E-16	-15.142
2300	1599.9)		7.866		10.950	10.104	11.008	-8.648	3.64	638.99	6.16E-16	-15,211
2400	1599.9)		7,593		10.882	10.087	10,947	-8.709	3.59	658.24	5.28E-16	-15.278
2500	1600.0)		7.326		10.815	10.070	10.887	-8.769	3,55	677.32	4.54E-16	-15.343

ž

HE I GHT KM	TEMP K	LOG (N (N2) /M3)	LOG (N (O2) /M3)	LOG(N(O) /M3)	LOG (N (A) /M3)	LOG (N (HE) /M3)	LOG (N (H) /M3)	LOG(N /M3)	LOG (PRESSURE NT/M2)	MEAN MOL WT	DENSITY SCALE HT KM	DENSITY KG/M3	LOG (DEN KG/M3)
90	188.0	19.746	19.170	17,390	17.824	14.573		19.854	~• 732	28.91	5.63	3.43E-06	-5.465
92	188.1	19.592	19,009	17.547	17,669	14.418		19.700	886	28.85	5.58	2.40E-06	-5.620
94	188.7	19.436	18.843	17.645	17.514	14.263		19.545	-1.040	28.76	5,54	1.67E-06	-5.776
96	189.9		18.672	17.685	17.358	14.107		19.389	-1.192	28.65	5.51	1.17E-06	-5.934
98	192.0	19.125	18.497	17.686	17.202	13.951		19.233	-1.343	28,52	5.51	8.10E-07	-6.091
100	195.6	18,969	18.321	17,663	17.047	13.796		19.078	-1.490	28.36	5.59	5.64E-07	-6.249
102	201.2	18,816	18.146	17,596	16.834	13.768		18.925	+1.631	28.21	5.57	3.94E-07	-6.404
104	209.7		17.968	17.536	16,623	13.737		18.772	-1.766	28.03	5.58	2.75E-07	-6.560
106	221.9	18.509	17.787	17,477	16.415	13.704		18.620	-1.894	27.81	5.61	1.93E-07	-6.716
108	238.5	18,357	17.602	17.413	16.211	13.667		18.470	+2.012	27.56	5.69	1.35E-07	-6.869
110	259.7	18,209	17.415	17.343	16.015	13.628		18.324	-2.122	27.31	5.88	9.56E-08	-7.020
115	328,4			17.151	15.574	13.531		17.992	-2.352	26.72	7.05	4.35E-08	-7.361
120	404.9			16,965	15.213	13.448		17.722	-2.531	26.29	8.72	2.30E-08	-7.638
125	484.1			16.801	14.913	13.377		17.499	-2.676	25.95	10.37	1.36E-08	-7.867
130	564.3			16,659	14.658	13.317		17.311	-2.797	25.65	12.19	8.72E-09	-8.060
135	643.7			16.537	14.438	13.265		17.150	-2.901	25.38	14.06	5.95E-09	-8.225
140	721.6			16.430	14.245	13.220		17.009	-2.992.	25.13	15.99	4.26E-09	-8.370
145	797.2			16.335	14.073	13.181		16.885	-3.073	24.89	17.96	3.17E-09 2.44E-09	-8.498
150	869.9			16.250	13.918	13.145	11.150	16.775	-3.146	24.67	19.99	1.92E-09	-8,613 -8,716
155	939.3	16.472	15.429	16.173	13.776	13.114	11.090	16.675	-3,212	24.46	22.06		
160	1005.0	16.372	15.319	16.104	13.647	13.086	11.037	16.585	~3.273	24.26	24.16	1.55E-09	-8.810
170	1124.7	16,196	15.124	15.982	13.415	13.037	10.948	16.426	-3.383	23.89	28.42	1.06E-09	-8.976
180	1228.4	16.042	14.954	15.878	13.213	12.997	10.876	16.290	-3.481	23.54	32.67	7.62E-10	-9.118
190	1316.7	15.905	14.802	15.787	13.031	12.963	10.817	16.171	-3.570	23.21	36.85	5.71E-10	-9.243
200	1391.2	15.782	14.664	15,706	12.865	12.934	10.756	16.065	-3.652	22.90	40.89	4.41E-10	-9.355
210	1453.6			15,633	12.711	12.908	10.713	15.969	-3.729	22.60	44.64	3.49E-10	-9.457.
220	1505.6			15,566	12.566	12.886	10.677	15,881	-3.801	22.32	48.19	2.82E-10	-9.550
230	1548.9			15,503	12.429	12.866	10.645	15.799	-3.871	22.04	51.48	2.30E-10	-9.638
240	1585.0			15.445	12.297	12.847	10.618	15.723	-3.937	21.77	54.53	1.91E-10	-9.719
250	1615.2	15.276	14.095	15,389	12.170	12.830	10.594	15.650	-4.002	21.51	57.32	1.60E-10	-9.797
260	1640.4			15,336	12.048	12.815	10.573	15.581	-4.064	21.25	59.92	1.35E-10	-9.871
270	1661.6			15.284	11,928	12.800	10.554	15.515	-4.124	21.00	62.32	1.14E-10	-9.942
280	1679.5			15.235	11.811	12.786	10.537	15.452	-4.183	20.76	64.56	9.76E-11	-10.011
290	1694.6			15,186	11.696	12.772	10.522	15.390	-4.240	20.53	66.63	8.38E-11	-10.077
300	1707.4			15.139	11.583	12,759	10.509	15.331	-4.297	20.31	68.60	7.23E-11	-10.141
310	1718.4			15.093	11.471	12.746	10.496	15.273	-4.352	20.09	70.45 72.22	6.26E-11 5.44E-11	-10,204 -10,264
320	1727.7			15.047	11.361	12.734	10.485	15.217	-4,405 -4,458	19.88	73.90	4.74E-11	-10,324
330	1735.8			15.002	11.252	12.722	10.475	15.162			75.52	4.15E-11	-10.382
340	1742.8			14.958	11.144 11.037	12.710 12.699	10.466 10.457	15.108 15.056	-4.510 -4.562	19.47 19.28	77.08	3.64E-11	-10.439
350	1748.8	14.470	13,181	14,914	11001	12.049	104437	19,096	-4.302	•		_	
360	1754.0	14,396	13.095	14.871	10,931	12.688	10.449	15.004	-4.612	19.10	78.59	3.20E-11	-10.495
370	1758.6	14,321	13,011	14.828	10.826	12.677	10,441	14.953	-4.661	18.92	80.06	2.82E-11	-10.549
380	1762.6	14,248	12.927	14.786	10,721	12.666	10.434	14.903	-4.710	18.75	81.48	2.49E-11	-10,603
390	1766.1	14.175	12.843	14.744	10,617	12.655	10.428	14.854	-4.759	18.59	82.87	2.21E-11	-10.656
400	1769.2	14,102	12.760	14,702	10.514	12.644	10.422	14.806	-4.806	18.44	84.23	1.96E-11	-10.708

		-	-	_									
			1.05 (1) (0.01	10541101	1.06 (N/A)	1 06 (N/11/5)	LOGINIU	1.06 (N	LOG (PRESSURE		DENSITY SCALE HT	DENSITY	LOG (DEN
HEIGHT			LOG (N (02)		LUGINIAI	LOGINIHE	LUGINIHI	LUGIN	NT/M2)	MOL WI	KM	KG/M3	KG/M3)
KM	K	/M3)	/M3)	/M3)	/M3)	/M3)	/M3)	/M3)	NITMET		Ni.		KG/HJ/
4.20		12 050	12 504	14.619	10.308	12.623	10.410	14.712	-4.899	18.14	86.85	1.55E-11	-10.810
420	1774.4		12.596	14.519	10.105	12.602	10.410	14.619	-4.990	17.87	89.34	1.24E-11	-10,908
440 460	1778.5		12.433	14.456	9.904	12.581	10.391	14.530	-5.080	17.63	91.75	9.91E-12	-11.004
	1784.5		12,112	14.375	9.704	12.561	10.384	14.442	-5.167	17.40	94.06	7.99E-12	-11,098
500	1786.7		11.953	14.296	9.506	12.541	10.377	14.356	-5.252	17.19	96.25	6.47E-12	-11.189
520	1788.5		11.795	14.217	9.310	12.521	10.371	14.271	-5.336	17.00	98.35	5.27E-12	-11.278
540	1790.0		11.639	14.138	9.114	12.501	10.365	14.188	-5.419	16.82	100.34	4.31E-12	-11.366
560	1791.2		11,483	14.061	8.921	12.482	10.358	14.107	-5.500	16.65	102.26	3.54E-12	-11.451
580	1792.3		11.329	13.983	8.728	12.462	10.352	14,027	⇔5 •580	16.50	104.10	2.91E-12	-11.535
600	1793.1		11.176	13,906	8.537	12.443	10.346	13.948	~5.658	16.35	105.85	2.41E-12	-11.618
620	1793.9	12.580	11.023	13.830	8.346	12.424	10.340	13.870	-5.736	16.20	107.52	2.00E-12	-11.700
640	1794.6		10.872	13.754	8.157	12.405	10.335	13.794	~5.812	16.07	109.13	1.66E-12	-11.780
660	1795.1		10,721	13,679	7.970	12.386	10.329	13.719	-5.887	15.93	110.68	1.38E-12	-11.859
680	1795.6			13,604	7.783	12.367	10.324	13.645	-5.961	15.79	112.18	1.16E-12	-11.937
700	1796.0			13,530	7.597	12.348	10.319	13,572	-6.034	15.65	113.63	9.69E-13	-12.014
720	1796.4			13,456	7.413	12.330	10.314	13.500	-6.106	15.51	115.05	8.13E-13	-12.090
740	1796.7	11,797	10.128	13,382	7,230	12.311	10.309	13.429	-6.177	15.36	116.45	6.84E-13	-12.165
760	1797.0		9.982	13,309	7.047	12,293	10.304	13.359	-6.247	15.21	117.83	5.77E-13	+12,239
780	1797.3			13.237	6.866	12.275	10.299	13.290	-6.315	15.05	119.20	4.87E-13	-12.312
800	1797.5	11.416	9,693	13,165	6.686	12.257	10.294	13.223	-6.383	14.88	120.58	4.12E-13	-12.385
820	1797.7	11,290	9.549	13,093	6.507	12,239	10.290	13,156	-6.449	14.70	121.94	3.50E-13	-12.456
840	1797.9			13,021	6,329	12.221	10.285	13.091	-6.514	14.50	123.32	2.97E-13	-12.527
860	1798.1		9.265	12,950	6,151	12.203	10.280	13.027	-6.578	14.30	124.74	2.53E-13	-12.597
880	1798.2	10.917	9.124	12,880		12.186	10.276	12.965	-6.640	14.08	126.19	2.16E-13	-12.666
900	1798.3	10.794	8.983	12,810		12.168	10.271	12,903	-6.702	13.85	127.69	1.84E-13	-12.735
920	1798.5	10,672	8.844	12.740		12.150	10.267	12.844	-6.762	13.61	129.25	1.58E-13	-12.802
940	1798.6			12,671		12,133	10.262	12.785	-6.820	13.35	130.88	1.35E-13	-12.869
960	1798.7			12,602		12.116	10.258	12.728	-6.877	13.08	132.60	1.16E-13 1.00E-13	-12.935
980	1798.8			12.533		12.099	10.254	12.673	-6.932	12.80	134.40	8.62E-14	-13.000 -13.064
1000	1798.8	10.190	8.293	12,465		12.082	10.249	12.619	-6.986	12.50	136.32	8.0214	=13,004
1050	1799.0			12,296		12.039	10.238	12.491	-7.114	11.70	141.64	6.02E-14 4.26E-14	-13.221 -13.371
1100	1799.2			12,129		11.998	10.228	12.373	-7.232	10.86	147.98	3.06E-14	~13.514
1150	1799.3			11.965		11.956	10.217	12.266	- 7.339	10.00	155.61 164.82	2.24E-14	-13.650
1200	1799.4			11.802		11.916	10.207	12.169	-7.436	9.15 8.34	176.03	1.67E-14	-13.777
1250	1799.5			11.642		11.876	10.197	12.081	-7.523	7.60	189.56	1.27E-14	-13.896
1300	1799.5			11.484		11.836	10.187	12.003	-7.602 -7.673	6.94	205.75	9.86E-15	-14.006
1350	1799.6			11.328		11.797	10.177 10.167	11.452	-7.737	6.37	224.87	7.81E-15	-14.107
1400	1799.6			11.174		11.759	10.158	11.810	-7.795	5.89	247.12	6.32E-15	-14,200
1450	1799.7			11.022		11.721 11.683	10.148	11.756	-7.848	5.50	272.46	5.21E-15	-14.283
1500	1799.7	7.403		10.872		11.003	104140	11.130			-		
1600	1799.6	6.887	,	10,578		11.610	10.130	11.661	-7.944	4.91	331.17		-14.428
1700	1799.8	6.385	i	10.291		11.538	10.112	11.577	-8.028	4.52	396.70	2.83E-15	-14.548
1800	1799.8	3		10,011		11.468	10.094	11.500	-8.105	4.27	462.49	2.24E-15	-14.649
	1799.9			9.738		11.399	10.077	11.428	-8.176	4.11	523.14	1.83E-15	-14.737
	1799.9			9.471		11.333	10.060	11.361	-8.244	4.01	575.57	1.53E-15	-14.816
	1799.9			9.211		11.267	10.043	11.296	-8.308	3.93	619.30	1.29E-15	-14.889
2200	1799.9			8.956		11.204	10.027	11.234	-8.371	3.88	655.94	1.10E-15 9.52E-16	-14.957 -15.021
2300	1799.9			8,708		11.142	10.012	11.174	-8.430	3.84	687.05	8.25E-16	-15.021
	1799.9			8.465		11.081	9.996	11.116	-8.488	3.80	714.06	7.19E-16	-15,143
2500	1799.9	7		8,228		11.022	9.981	11.060	-8.545	2.11	738.63	1 + 1 3 - 10	4130143

										-		•	
									LOG		DENSITY	D=115 ==14	
HEIGHT			LOG (N(02)						(PRESSURE	MOL WT	SCALE HT	DENSITY	LOG (DEN
KM	K	/M3)	/M3)	/M3)	/M3)	/M3)	/M3)	/M3)	NT/M2)		KM	KG/M3	KG/M3)
90	188.0	19.746	19.170	17.390	17.824	14.573		19.854	732	28.91	5.63	3.43E-06	-5.465
92	188.2			17.547	17.669	14.418		19.700	886	28.85	5.58	2.40E-06	-5.620
94	188.7			17.645	17.514	14.263		19.545	-1.040	28.76	5.53	1.67E-06	-5.776
96	190.0			17.685	17.358	14.107		19.389	-1.192	28.65	5.51	1.16E-06	-5.934
98	192.2		18.497	17.686	17.202	13.951		19.233	-1.343	28.52	5.50	8.10E-07	-6.092
100	195.9		18.321	17.662	17.046	13.795		19.078	-1.490	28.36	5.58	5.63E-07	-6.249
102	201.8		18.145	17.595	16.834	13.767		18.924	-1.631	28.21	5.57	3.93E-07	-6.405
104	210.7			17.535	16,623	13.736		18.771	-1.765	28.03	5.58	2.75E-07	-6.561
106	223.4			17.475	16.414	13.702		18.619	-1.892	27.81	5.60	1.92E-07	-6.717
108	240.7			17.411	16.211	13.665		18.469	-2.010	27.57	5.69	1.35E-07	-6.871
	2400,												•
110	262.8	18,207	17.415	17.340	16.015	13.626		18.323	-2.118	27.31	5.88	9.53E~08	-7.021
115	334.5	17.868	16.987	17,147	15.576	13.527		17.991	-2.345	26.73	7.08	4.35E-08	-7.362
120	414.3	17.590	16.660	16,962	15.219	13.443		17.723	-2.520	26.31	8.79	2.31E-08	-7.637
125	496.9	17.359	16.403	16.798	14.923	13.372		17.502	-2,662	25.98	10.48	1.37E-08	-7.863
130	580.6	17,163	16.188	16,658	14.673	13.312		17.316	-2.780	25.70	12.34	8.83E-09	-8.054
135	663.8	16.994	16.003	16,536	14.456	13.260		17.157	-2.881	25.43	14.24	6.06E-09	-8.218
140	745.8	16.846	15.841	16.430	14.267	13.215		17.018	-2.970	25.19	16.19	4.36E-09	-8.361
145	826.0	16,714	15.697	16,336	14.098	13,175		16.895	-3.048	24.97	18.18	3.26E-09	-8.487
150	904.0	16.596	15.567	16,251	13.945	13.139	11.051	16.786	-3.118	24.76	20.22	2.51E-09	-8,601
155	979.3	16.488	15,450	16,175	13.807	13.107	10.991	16.687	-3.182	24.56	22.30	1.98E-09	-8.703
													0 70/
160	1051.5			16.106	13.680	13.079	10.938	16.597	-3.241	24.37	24.43	1.60E-09	-8.796
170	1185.5			15.984	13.454	13.029	10.848	16.440	-3.346	24.02	28.78	1.10E-09	-8.959
	1304.3			15.880	13.257	12.988	10.776	16.305	-3.439	23.69	33.22	7.95E-10	-9.100
	1407.7			15.790	13.082	12.953	10.716	16.188	-3.523	23.39	37.68	5.99E-10	-9.222
	1496.3			15.710	12.922	12.923	10.653	16.085	-3.600	23.10	42.07	4.66E-10	-9.331
	1571.4			15.639	12.776	12.897	10.610	15.992	-3.672	22.82	46.24	3.72E-10	~9.430
	1634.7			15.574	12.639	12.875	10.572	15.907	-3.740	22.56	50.25	3.02E-10	-9.520
230	1687.8			15.514	12.511	12.855	10.540	15.828	-3.804	22.30	53.98	2.49E-10	-9.603
240	1732.3			15.458	12.388	12.837	10.512	15.755	-3.866	22.05	57.48	2.08E-10	~9.68l
250	1769.6	15.334	14.168	15.406	12.271	12.820	10.487	15.686	-3.926	21.81	60.69	1.76E-10	-9.755
260	1800.9	15,252	14.075	15,356	12.157	12.805	10.466	15.621	-3.983	21.58	63.67	1.50E-10	-9.824
270	1827.3			15.308	12.047	12.790	10.446	15.559	-4.039	21.35	66.40	1.28E-10	-9.891
	1849.5			15.261	11.939	12.777	10.429	15.500	-4.093	21.13	68.95	1.11E-10	-9.955
	1868.3			15.217	11.834	12.764	10.413	15.442	-4.146	20,91	71.30	9.61E-11	-10.017
300	1884.3			15.173	11.731	12.752	10.399	15.387	-4.198	20.70	73.51	8.37E-11	-10.077
	1898.0			15.130	11.629	12.740	10,386	15.333	-4.249	20.49	75.55	7.32E-11	-10,136
	1909.7			15.089	11,529	12.728	10.374	15.280	-4.299	20,29	77.51	6.42E-11	-10,192
	1919.8			15.048	11,430	12.717	10.364	15.229	-4.348	20.10	79.36	5.65E-11	-10.248
	1928.4			15.007	11.332	12,706	10.354	15.179	-4.396	19.91	81.13	4.99E-11	-10,302
350	1936.0			14,967	11.235	12.696	10.345	15,130	-4.443	19.73	82,82	4.42E-11	-10,355
		_		_				-					
360	1942.5			14,928	11.139	12.685	10.336	15.082	-4.490	19.55	84.45	3.92E-11	-10,407
370	1948.2			14.889	11.044	12.675	10.328	15.035	-4.535	19.38	86.03	3.49E-11	~10,458
380	1953.2	14.394	13,101	14.851	10.949	12.665	10.321	14.989	-4.581	19.21	87.55	3.11E-11	-10,508
390	1957.7	14.328	13,025	14.812	10.855	12.655	10.314	14.943	-4.625	19.05	89.04	2.77E-11	-10,557
400	1961.5	14.262	12.950	14.774	10.761	12.645	10.308	14.898	-4.669	18.89	90.48	2.48E-11	-10.605

EXOSPHERIC TEMPERATUKE = 2000 K

LOG (DEN KG/M3)	-100.700 -100.881 -100.968 -110.053 -110.136 -110.217	111. 526 111. 526 111. 601 111. 601 111. 601 111. 601 112. 601 112. 601 112. 601	112.223 112.2288 112.353 112.417 112.664 112.665 112.665	113.0.03.0.03.0.03.0.03.0.03.0.03.0.03.	11144.0332 11144.0332 11144.0554 1114.0554 1114.0755 1114.0755
DENSITY KG/M3	2.00E-11 1.00E-11 1.00E-11 1.008E-11 8.00E-12 6.03E-12 5.005E-12 3.54E-12	2.986 2.986 2.156 11.806 11.806 11.10	5.00 5.00	1.17 6.5.17 6.5.17 7.5.5.11 7.5.5.11 7.5.5.11 7.5.5.11 7.5.5.11 7.5.5.11 7.5.5.11 7.5.5.11 7.5.5.11	2.2.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5
DENSITY SCALE HT	998.209 995.209 101.008.209 1008.209 1108.209 1110.209 1112.304	1116,30 1119,95 1119,95 1121,69 123,37 125,00 128,14 139,66	132. 135. 135. 135. 138. 145. 147. 147. 147. 147. 147. 147. 147. 147	150.48 155.28 160.74 167.00 174.33 182.07 204.98 219.00	2775 3826 3826 3826 5627 5647 6647 736 736 747 848 848 866 748 866 748 866 748 866 748 866 748 866 748 866 748 866 748 866 748 866 748 748 748 748 748 748 748 748 748 748
MEAN MOL WI	18 10 10 10 10 10 10 10 10 10 10 10 10 10	115.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1155 1165 1175 1175 1175 1175 1175 1175	11123 111025 111105 11005 1005 1005 1005 1005	0 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
LOG (PRFSSURE NT/M2)	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	177 177 177 177 186 187 188 188 187 188 187 188 187 188 187 187
LOG (N	14.08111 14.08111 14.08111 14.081114 14.052 14.178	114, 113, 113, 113, 113, 113, 113, 113,	13.372 13.331 13.750 13.131 13.0075 12.969 12.969	12.728 12.604 12.6494 12.388 12.391 12.120 12.120 12.004 11.978	111.808 111.6534 111.6534 111.6531 111.7431 111.3421 111.3421 111.3421
LOG (N (H)	10.296 10.296 10.276 10.268 10.262 10.256 10.259 10.233	10.226 10.221 10.215 10.216 10.205 10.205 10.191 10.187	10.178 10.178 10.170 10.166 10.161 10.157 10.153 10.145	10.131 10.122 10.112 10.094 10.095 10.067 10.067	10.033 10.017 10.001 9.985 9.955 9.941 9.927 9.913
LOG (N (HE) /M3)	12.626 12.626 12.589 12.550 12.550 12.534 12.648 12.481	12. 446 12. 429 12. 3429 12. 348 12. 348 12. 326 12. 329 12. 312	12,280 12,264 12,248 12,216 12,216 12,16 12,169 12,169 12,153	12,000 12,063 12,025 11,989 11,989 11,982 11,882 11,813	111 - 713 111 - 649 111 - 586 111 - 586 111 - 466 111 - 292 111 - 292 111 - 186 111 - 186
LOG(N(A) /M3)	10.376 10.393 10.2393 10.0311 9.653 9.6575 9.925 9.151	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7.151 6.891 6.831 6.673 6.255 6.258 6.205		
LOG (N (O)	14.6599 14.6525 14.6525 14.6479 14.336 14.196 14.126	13, 988 13, 988 13, 852 13, 852 13, 651 13, 651 13, 553 13, 553 13, 553	13.324 13.259 13.259 13.196 13.069 13.069 12.944 12.882 12.882	12.606 12.456 12.308 12.162 12.018 11.735 11.597 11.597	11.060 10.802 10.350 10.304 10.064 9.830 9.601 9.377 9.377
LOG (N (02)	12.654 12.5554 12.5554 12.554 12.521 12.521 11.938 11.659	11.384 111.247 110.977 10.843 10.718 10.578 10.578 10.316	10.057 9.058 9.080 9.680 9.543 9.247 9.292 9.049	88 89 89 89 89 89 89 89 89 89 89 89 89 8	
TEMP LOG(N(N2) K /M3)	14.0132 113.0132 113.0132 113.0132 113.0132 113.0132 113.0132 113.0132 113.0132	12.8990 12.741 12.652 12.534 12.417 12.417 12.010 11.955	11.616 11.616 11.504 11.393 11.282 11.063 10.954 10.846	100.472 100.472 90.6210 90.695 90.1443 90.1443 90.1443 90.1443 90.1443 90.1443 90.1443	7.766 7.313 6.872 6.441 6.021
TEMP L	1968.0 1973.2 1980.6 1980.6 1983.3 1989.0 1989.0 1990.3	10000000000000000000000000000000000000	1997.1 1997.6 1997.6 1997.8 1997.9 1998.1 1998.2 1998.5	1998 8 1 1998 8 1 1999 8 1 199	1999.7 1999.8 1999.8 1999.9 1999.9 1999.9 1999.9
HE I GHT KM	4 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6620 660 680 720 740 740 800	820 840 860 880 900 940 940 960	1050 1150 1150 1250 1350 1450 1450	1600 1700 1800 2000 2100 2200 2400 2500

										N.F.A.N	DENCETY		
			1.05.11.1001	1.05 (1) (0)	10011	1.00 (3) (1)=5	1.06 (1) (1)	1.00.41	LOG		DENSITY	DENSITY	LOG (DEN
HEIGHT						LOG(N(HE)		-	(PRESSURE	MOT MI	SCALE HT		
KM	K	/M3)	/M3)	/M3)	/M3)	/M3)	/M3)	/M3)	NT/M2)		KM	KG/M3	KG/M3)
												•	
90	188.0	19.746	19.170	17.390	17.824	14.573		19.854	732	28.91	5.63	3.43E-06	+5.465
92	188.2			17.547	17.669	14.418		19.700	886	28.85	5.58	2.40E-06	
94	188.7			17.645	17.514	14.263		19.544	-1.040	28.76	5.53	1.67E-06	-5.776
96	190.0			17.685	17.358	14.107		19.389	-1.192	28.65	5.50	1.16E-06	-5.934
98				17.686	17.202	13.951		19.233	-1.343	28.52	5.50	8.09E-07	-6.092
100	192.3			17.662	17.046	13.795		19.078	-1.490	28.36	5.58	5.63E-07	-6.250
102	202.3			17.595	16.833	13.767		18.924	-1.630	28.21	5.56	3.93E-07	-6.406
104	211.5			17.534	16.622	13.736		18.770	-1.764	28.03	5.57	2.74E-07	-6.562
104				17.473	16.414	13.701		18,618	-1.890	27.81	5.60	1.92E-07	-6.717
108	224.7			17,409	16.211	13.663		18.468	-2'-007	27.57	5.68	1.34E-07	
108	242.6	18.355	17,600	11,403	10.211	13,063		10.400	#2 # UU I	21631	3.00		20,012
110	265.6	18,206	17.414	17.338	16.016	13.623		18.321	-2.114	27.32	5.89	9.51E-08	-7.022
115	339.9			17.144	15.579	13.524		17,990	-2.338	26.74	7.10	4.34E-08	-7.362
120	422.7			16.959	15,224			17.723	-2.511	26.33	8.85	2.31E-08	-7.636
125	508.4			16.796	14.932	13.368		17.504	-2.650	26.01	10.58	1.38E-08	-7.861
130	595.3			16.656	14,685	13.308		17.320	-2.765	25.73	12.47	8.92E-09	-8.049
135	681.7			16.536	14,472	13.256		17.162	-2.864	25.48	14.40	6.15E-09	-8.211
140	767.4			16.430	14.285	13.210		17.025	-2.950	25.25	16.37	4.44E-09	-8,353
145	851.8			16.336	14.119	13.170		16.903	-3.026	25.03	18.37	3.33E-09	-8.478
150	934.4			16.252	13,969	13.134	10,964	16.795	-3.095	24.83	20.42	2.57E-09	-8.590
155	1015.0			16.176	13.833	13.102	10.905	16.697	-3.157	24.64	22.51	2.04E-09	-8,691
175	1015.0	, 10.502	134401	10.110	13,003	13,102	10,703	10.67	-34151	£ 7,0 ·			
160	1093.0	16,405	15.361	16.107	13,708	13,073	10.851	16.608	-3.213	24.46	24.65	1.65E-09	-8.783
170	1240.1			15.985	13.487	13.022	10.761	16.452	-3.315	24.12	29.06	1.13E-09	-8.946
180	1373.2			15.882	13.294	12,980	10.687	16,319	-3.404	23.82	33.62	8.23E-10	-9.084
	1491.3			15.792	13,123	12.944	10.626	16.203	-3.484	23.53	38.28	6.23E-10	-9.205
	1594.2			15.713	12,970	12.914	10.563	16,101	-3.557	23.26	42.97	4.87E-10	-9.312
210	1682.5			15,643	12.829	12.887	10.519	16,009	-3.625	23.00	47.52	3.90E-10	-9.408
	1757.6			15,579	12,699	12.864	10.480	15,927	-3.688	22.76	51.94	3.19E-10	-9.496
230	1821.1			15.521	12.577	12.844	10.447	15.851	-3.749	22.52	56.12	2.65E-10	-9.576
	1874.6			15.467	12,461	12.826	10.419	15.781	-3.806	22.29	60.06	2.23E-10	-9.651
250	1919.6			15.417	12,351	12.810	10.393	15.715	-3.862	22.07	63.70	1.90E-10	-9.721
	-,				-		•				-	-	-
260	1957.5	15,303	14.139	15,369	12,245	12.795	10.371	15.653	-3.916	21.85	67.09	1.63E-10	-9.788
270	1989.5	15,229	14,055	15.324	12.142	12.781	10.351	15.594	-3.968	21.64	70.19	1.41E-10	-9.851
280	2016.5			15,280	12.043	12.768	10.333	15.537	-4.018	21.43	73.08	1.23E-10	-9.911
290	2039.4			15.239	11.945	12.755	10.317	15.483	-4.067	21.23	75.72	1.07E-10	-9.970
300	2058.9			15.198	11.850	12.744	10.302	15.431	-4.116	21.03	78.20	9.41E-11	-10.026
310	2075.5			15,158	11.756	12.732	10.289	15.380	-4.163	20.84	80.49	8.30E-11	-10.081
320	2089.8			15,120	11.664	12.722	10.277	15.331	-4.209	20.65	82.65	7.34E-11	-10.134
330	2102.0			15.082	11.573	12.711	10.266	15.283	-4.255	20.47	84.67	6.51E-11	-10.186
340	2112.6			15.044	11,484	12.701	10.256	15.236	-4.299	20.29	86.61	5.80E-11	-10.237
350	2121.8			15.008	11.395	12.691	10.246	15.190	-4.343	20.11	88.44	5.17E-11	-10.286
	•		•									_	
360	2129.8			14.971	11.307	12.682	10.237	15.145	-4.387	19.94	90.20	4.62E-11	-10,335
370	2136.8	14.573	13.310	14,936	11.219	12.672	10.229	15.101	-4.429	19.78	91.90	4.14E-11	-10.383
380	2142.9			14.900	11.133	12.663	10.221	15.058	-4.471	19.61	93.52	3.72E-11	-10.430
390	2148.3	14.451	13.171	14.865	11.047	12.654	10.214	15.015	-4.513	19.46	95.11	3.34E-11	-10.476
	2153.0			14.831	10.962	12-645	10.207	14.973	-4.554	19.30	96.64	3.01E-11	-10.521

Ç

EXOSPHERIC TEMPERATURE = 2200 K

L06(DEN K6/M3)	-10.609 -10.695		· .			:-:	3.0	1.45	-11,521	1.58	5991	7,6	79 / 0	1.9	1.97	03	6	-12,152	2,21	2,26	2,32	•	2.49	2,55	68	2. B 2	2.95	3.07	3,20	16.0	-13.542	3.64	3.74	3,9	60	4,23	4.36	4			77	£ 83	
DENSITY KG/M3	2.46E-11 2.02E-11	38E-1	. 15E-1	.06E-1	.79E-1	86E-1	1.66.1	536-1	3.02E-12	. 59E-1	.22E-1	1 - 316	43541	23E-1	.07E-1	1	<u> </u>	£-1	<u></u>	Ä.	3	1	E	2,80E-13	, i	E	E-1	E-1	4	1	2.87E=14	E-1	E-1	-	-	7	7	7	<u>;</u>		1.695-15	7	
DENSITY SCALE HT KM	99.62	07.9	13.0	15.4	17.8	22.3	3,4	24.5	128.68	30.6	32.5	4.4	700	30.0	41.4	6.2	44	• •	47.7	49.3	80	4 ° 7 'S	55.5	157,15	. 19	4.59	0.0	74.9	80.5	900	202.10	11.4	22.3	48.9	83.8	27.8	81.3	φ. •	֓֞֓֓֓֓֓֓֞֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֡֓֓֓֡֓֓֡֓֡֓֡֓֡	7	710.49	68,5	
MEAN MCL WT.	19.01		8,7	: ~:	۴.	: ;:	70	0 0 7	16.67	16.54	16.41	16.29	97.0	15,95	15.84		. 4		5.3	5.2	2.0	ر د د	7	4.5	4		, "	2	2	∴ ,	10.0	•	•	9		٠,	ď,	٠.	•	•	4.18	7	
LOG (PRESSURE NT/M2)	4.634	9	93	8	.15	28		0 0 0 C	-5.482	5,54	9.60	5.66	5.43	5. P. S	5.90	ž	200	0	6,13	6.19	6.24	29	4	-6.454	7	- 0	8	16	5	=ິເ	- (- 203	36	43	5.5	99	.75	.83	8	6	200	-8,132	18	
LOG (N	14.891 14.812	4.6	4 4 7	. 4	4.			• •	14,037	3,97	3.91	3.84	3.78	3.66	3.61		. מ מ	. 4	3,38	3,32	3.27	3.21		3.06	•	•	•	•	4	3 (12.233	• -	12,086	1.06	1.85	1.76	1.68	1.61	1.55	1 . 4 V	11.386	1,33	
LOG (N(H)	10,195 10,184			•				•	10,114		0	0.0	90			•	Š		0	ō.	ŏ,	o c	Ö	10.044	0		0.0	8	000	66.	4.904	96	96	40		.91	90	.88	, B ,	9 4		.82	
LOG (N (HE) /M3)	12.627	2.57	2.55	2,52	2,51	2°47		7. 2.40 4.40	. 4	2,41	2.40	2,38	2.37	7.30	2.32	,	7.00	28	2,26	2,25	2,23	2,52	7.10	12,182	7	7 - 1	2.08	2.04	2.01	1.98	* 0	1.88	11.856	1,70	1.73	1.68	1,62	1.56	1.5	4.4	. "	1,31	مر
LOG (N (A) /M3)	10.793	0.29	0,13	. 18	9	ው ¢	9	200	8.874	72	20	7	2 -	:6	7,823	1	2 6	38	.24	60	\$6.	18.	. K	6,393	4.048	2																	
/W3) LDG (N (O)	14,762	4.56	4.49	4.36	4.30	4.17 4.17		4. L	9	3,92	3.86	9	3.74	200	30		0 K	. W	 	3.2	3,0			12,995	a a	7.77	2.58	2,45	2,32	2,19	9 0	1.81	1.6	4.	2,	86	• 76	54		77.	9.723	52	
L0G(N(02) /M3)	12,967	in	~ ~	, ₁	∼.			9 4		30	18	9	94	200	10,586		֓֞֜֜֜֜֜֜֝֓֜֜֜֓֓֓֓֓֜֜֜֓֓֓֓֓֓֓֓֓֡֓֜֜֓֓֓֓֡֓֜֜֓֡֓֡֓֡֓֡֓֡֓֡֓֡֡֡֡֜֡֓֡֡֡֡֓֡֡֜֜֡֡֡֡֡֡	23	0,12	00.00	89	~;	ָ פֿינ	9.441	4	9 0	62	35	60.	8	מית	9.0	6.835	4.354	1								
LOG(N(N2)	14.272	3.92	3,80	3,58	3.47	3,26 3,25		4.0	2.0	2,81	2,71	2.60	2.49	200	12,187	,	200	8	1.77	1,67	1.57	1.47	200	11,184	ò	, ,	0.46	23	0.0	8,1	กูเ	; -	8.903	4	0	7.669	.27	.89	52.	₹.			
TEMP LC	2161.0	176. 176.	179.	184.	186	188.		26.	192	193	194.	194.	195	192	2196.2	}	961	197.	197	197.	197.	197	9 0	2198.2	9	9 0	108	199.	199.	199.	199	100	2199.5	0	100	199.	199.	199.	199.	199.	100	2199.9	
HE I GHT KM	440	480	500	240	260	009 909		079	099	989	100	120	740	0 0	8008		VV	• •	8	0	~	す、	0 0	1000		1000	0511	1200	1250	1300	1350	1450	1500	٠,	3 r	യ	Ç	ο.	→ (~ .	2400	2500	

EXOSPHERIC TEMPERATURE = 2400 K

-10.276 -10.321 -10.365 -10.408 LOG(DEN KG/M3) 1.75E-10 1.32E-10 1.32E-10 1.07E-10 1.04E-10 8.19E-11 7.32E-11 5.85E-11 1.059E.09 1.17E.09 8.48E.10 6.44E.10 5.05E.10 4.05E.10 2.35E.10 2.35E.10 5.30E-11 4.78E-11 4.32E-11 3.91E-11 4.9.48 E. 10.9.49 E. 1 3.43E.06 [1.67E.06 [1.67E.06 [3.09E.06 [3.09E.07] [3.09E.07] [3.09E.07] [3.09E.07] [3.09E.07] DENSITY KG/M3 MEAN DENSITY MOL WT SCALE HT KM 95.84 97.67 99.41 101.10 70.18 730.18 746.93 796.93 82.63 85.21 87.61 99.98 93.96 5.89 11.00 10.00 1 21.69 21.50 21.32 21.14 20.96 20.79 20.62 24.53 22.53 23.65 23.65 23.65 22.65 22.65 22.65 22.65 23.65 25.65 20.29 20.13 19.97 19.82 LOG (PRESSURE . NI/M2) -4.299 -4.339 -4.417 -4.455 -3.644 -3.701 -3.808 -3.450 -3.519 -3.584 -2.111 -2.333 -2.502 -2.849 -2.933 -3.007 -3.074 -2.639 -2,752 16.462 16.330 16.215 16.114 15.963 15.869 15.869 15.869 18.320 17.9990 17.724 17.506 17.323 17.167 17.031 16.911 16.803 15.516 15.466 15.418 15.326 15.2826 15.2826 15.197 15.155 15.114 15.074 19.854 19.700 19.546 19.538 19.033 19.033 18.923 18.470 18.467 16.617 15.678 15.621 15.567 LOG(N(A) LOG(N(HE) LOG(N(H) LOG(N /M3) /M3) /M3) /M3) 10.5474 10.683 10.683 10.483 10.438 10.399 10.335 10.335 10.287 10.266 10.248 10.232 10.217 10.203 10.190 10.168 10.149 10.141 10.133 10.125 10.887 13.068 13.016 12.973 12.905 12.878 12.855 12.834 12.816 13.621 13.521 13.364 13.364 13.264 13.252 13.256 13.130 13.097 12.785 12.771 12.758 12.747 12.735 12.725 12.704 12.695 12.686 12.676 12.668 12.659 12.650 12.642 14.573 14.263 14.107 13.9951 13.795 13.795 13.795 13.795 2.936 12.317 12.221 12.127 12.037 11.948 11.861 11.691 11.608 11.445 11.364 11.285 11.205 17.824 17.669 17.569 17.514 17.202 17.202 17.202 16.6833 16.622 16.414 16.016 15.020 16.020 16.020 16.0000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.0000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.0000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.0000 16.00 3,515 13.159 13.009 12.873 12.748 12.631 12.521 LOG (N (O) 17.336 17.141 16.956 16.496 16.655 16.535 16.337 16.253 16.177 16.108 15.987 15.883 15.714 15.455 15.582 15.525 15.424 15.073 15.005 14.972 14.939 14.907 17.0885 11.0685 11.0685 11.0685 11.0594 11.0594 11.0594 LOG(N(N2) LOG(N(02) 14,190 14,111 14,035 13,961 13,889 13,819 13,750 13,682 13,682 19.170 19.009 18.843 18.671 18.497 18.320 18.144 17.966 17.599 13,483 13,418 13,354 13,291 13,228 117.413 116.0413 116.0655 116.022 116.022 117.413 117.424 117.424 15.378 15.192 15.031 14.890 14.764 14.650 14.448 14.358 15.244 15.274 15.207 15.207 15.078 15.078 17.895 14.895 14.895 16.248 16.248 16.101 15.943 15.455 15.661 15.464 15.464 15.464 17.464 14.663 14.663 14.607 14.551 14.496 18.205 17.868 17.592 17.365 17.173 17.008 16.863 16.619 16.514 19.746 119.592 119.592 119.280 119.124 118.968 118.815 118.661 118.507 2316.0 2324.3 2331.6 2338.1 2343.7 2268.1 4344.8 5130.4 518.8 608.5 698.0 786.9 961.8 1568.5 1685.5 1787.3 1874.6 1949.1 2012.1 2110.3 2148.3 2180.5 2207.8 2231.1 2251.0 2268.0 2282.7 2295.4 2306.4 188.0 188.2 188.8 190.1 190.1 195.5 202.8 212.3 244.4 1130.3 TEMP K HE I GHT KM 0 2 4 8 8 0 0 0 0 0

EXOSPHERIC TEMPERATURE = 2400 K

1	2500	0040	2300	2200	2100	2000	2 400	1000	1800	1700	1600		1500	•	•				N	N	_			_	1000	980	960	940	0.76	2 6	000	880	860	840	820		800	280	100	1	7.00	720	700	680	660	640	620		0	œ	•	٠.	٠,	v	٥ د	9.4	•		v		3	HE 13H	7	
	2399.9	00	99.	399.	399.	399.		200	900	399.	399.		2399.4	399.	399.	399.	2 7 7	000	399.	398.	398.	9060		80	707	397.	397.	397.	391		207	306	2396.5	396.	395.		395	295	1 1	160	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100	392	392.	391	390.	œ		387.	385	100		300	1 - 7	275	2371.6	7	260	353			7E37	1	EXCORDENT
	•	3 0	62	•	. Z	0		J I	ָ עו	69	9.075		9.462	•	. 85		0 0	0	0.47	0.68	8	•	- 1	1 33									12 191		12,378		47	200			75	2 85	95	3.05	3.14	3.24	w		3.44	50.04			3 6 6	ָ מ מ	300	14.065	4 17	4.27	4.38		i	(ZN) N) SOT		
								•	. 18	.60	7.037		7,479	•	•	•			•	•	•			•	86	• 97	0.07	110		3 6	3	0.49	59	0.70	0		0.91	1		- 5	200	1 35		. 57	1.69	1.80	11.917		2.0	•		9			2	12.736	2	2 . 9	u		,	/M3)	. >>>	7
	10,012	0.19	0.37	0.55				1 . 1 4	1.34	1,55	1.77		1.99	2,10	77.7			2.45	2,57	2,69	•	1 0	0	3.06		٠.,							13,554		13,661		3,71	10	76	ָ פּ פּ	87	93	3.99	4.04	4,10	4.15	14,215	,		•	٠.	١.		١.	•	14.627	1	4			1	/M3)	06.68.60	•
																						•	6.306	61	•93	.06	-		נו נונו		58	17.	• 84	• 97	8.111		•	. :					•	•	•		9.49.5		•	•	. :	0		0	0	10.515	•	9	2.0			/M3)	I OCINIA)	
_	11.422	1.46	1.51	1.55	100			1.70	1.75	1.80	1.86		1.91	1.94	1 6 1		000	2.03	2.06	60.2	2000	31	7	2.18	2.21	2.23	47.7	100	10	2	2.28	2.29	. 30	2.32	· N		6.54		2	יי ני	2.38	2.40	2,41	2,43	2.44	1040	12.474		7.40		5 F	2.51	יות נענ	2.54	2.56	12.578	59	• 60	62		:	/M3)	1 06 (N (HE	
	•	•	•	•					ė	å	00		.87	88				90	.91	. 92	2000		0	• 94	•	•	•		•			•	•	•	9.988		-	_				•	_	_	•	•	10.033		-	٠,	~ <i>i</i>	_	_	_	_	10.076	_	$\overline{}$	0			/M3)	_	
	1.44	1.49	1.54	1.60			177	1.81	1.90	2.00	12,125		2.26	6.33	1	3	2 50	2.59	2.69	41.7	100	9 6	3.01	3.12	,,	3.29) (100	3 4 4	64.	• 54	• 59	.64	13.703	,	.5.75	, i	ב ב	9	3.02	3.98	4.03	4.09	4.15	*	14.77			٠.			5		•	14.739	30	•	•			/M3)		
	03	7.98	7.93	. 8			7.74	7.66	7.57	7.41			7.21				4.97	6.88	6.78	000	•	, i	6.47	35	6.23	91.9	0 1 1		000	6.03	5.98	5,93	88	5.83	-5.777			•		5	5	¥.	5.4	5			10000	,	•	٠:	_ :	•	•	•	•	-4.746	•	•	-4.530			-	LOG	
	ů	•,	•	·	٠.		•	5	ů	:	9.37	,		:		_	2	2				•	4	14.81	5			7	5	ייי	5.6	5.7	5.8	9	16.07	•	0	•	•	•	Ò	0	٥	0	-	:	17 67				7.6	7.7	7.9	8.1	8.3	÷	8.8	•	19,39				MCE AT	
	5.6	35.2	65.0			7	80.4	33.8	95.6	1.00	, ,		77		1	07.	2.1	95.4	7.06	9 0	2	80.9	76.6	72	68.3	0		7 1		61.7	60.0	58.3	6.5	4.0	10.601	,		51	49.2	47.3	45.3	43.3	41.2	1.66			126.71	20.		30.0	27.5	25.1	22.5	19.9	17.3	4.5	11.7	08.8	6			X	DENSITY	1
	044-1	37E-1	195-1		20-1	18E-1	.35E-1	.09E-1	755-1	1-160	Z-0/E-14) 	1-361	1000	00F_1	09E-1	.50E-1	.37E-1	-		42E_1	86E-1	46E-1	28E-	1-365	4000		596	31E-1	.13E-1	08E-1	165-1	1-340	-	10511	3 8 6		54E-1	.75E-1	.01E-1	.30E-1	645-1	040-1		1000	0.5-1	4.70E-12	445		36E-1	43E-1	.70E-1	.02E-1	21E-1	43E-1	.70E-1	026-1	435-1	925	1		KG/M3	DENSITY	
	-14.69	-14.62	14.00		-14.47	=14.37	-14.27	-14.14	-14.01	11000	1 1		44.61-	11000	יייי	-13.29	-13.18	-13.07	06.71*	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12.84	-12.73	-12.60		14.35		2	12.25	12.20	12.14	12,09	F0 21	11.98	76.41	11.077			11.81	11.75	11.69	11,63	11.57	11.01			1 1 2 0 0	11.328	1 2	•	11.19	11.12	11.06	10.99	10.91	10.84	0.77	10.69	10.61	-10.534	;		KG/M3)	LOG (DEN-	

									LOG	MEAN	DENSITY		
HE I GHT	TEMP	LOG(N(N2)	LOG(N(02)	LOG(N(O)	LOG(N(A)	LOG(N(HE)	LOG (N(H)	LOG (N	(PRESSURE		SCALE HT	DENSITY	LOG (DEN
KM	K	/M3)	/M3)	/M3)	/M3)	/M3)	/M3)	/M3)	NT/M2)		KM	KG/M3	KG/M3)
		-			·	, , ,		,	**********				
90	188.0	19.746	19.170	17,390	17.824	14.573		19.854	732	28.91	5.63	3.43E-06	-5.465
92	188.2	19.592	19,009	17.547	17.669	14,418		19.700	886	28.85	5.58	2.40E-06	-5.620
94	188.8			17.645	17.514	14.263		19.544	-1.040	28.76	5.53	1.67E-06	-5.777
96	190.2		18,671	17.685	17,358	14.107		19.389	-1.192	28.65	5.50	1.16E-06	.5.934
98	192.6		18.497	17.685	17,202	13.951		19.233	-1.343	28.52	5.49	8.09E-07	-6.092
100	196.7		18.320	17.661	17.045	13.794		19.077					
102	203.2		18.144	17.593	16.833				-1.489	28.36	5.57	5.62E-07	-6.250
104						13.766		18.923	-1.629	28.21	5.55	3.92E-07	-6.406
	213.0		17.966	17.532	16.622	13.734		18.769	-1.762	28.03	5.56	2.74E-07	-6.563
106	227.0		17.784	17.471	16.413	13.699		18.616	-1.888	27.81	5.59	1.91E-07	-6.719
108	246.0	18.353	17,599	17.405	16.211	13.660		18.466	-2.003	27.58	5.68	1.34E-07	-6.873
110	270.4	18,205	17.413	17.334	16.016	13.619		18.319	-2.109	27.32	5.89	9.47E-08	-7.024
115	349.4		16.988	17.139	15.583	13.518		17.989	-2.328	26.76	7.14	4.33E-08	-7.363
120	437.3		16.667	16.954	15.233	13,432		17.724				2.32E-08	
125	528.3		16.417		14.946		•		-2.495	26.36	8.96		-7.635
				16.792		13.361		17.508	-2.629	26.06	10.74	1.39E-08	-7.856
130	620.7		16.208	16.654	14.705	13.300		17.327	-2.741	25.79	12.70	9.08E-09	-8.042
135	712.9		16.030	16,535	14.497	13.248		17.172	-2.835	25.55	14.67	6.30E-09	-8.201
140	804.7		15.874	16.430	14.315	13.203		17.037	-2.918	25.33	16.67	4.58E-09	-8.340
145	896.1	16.743	15.735	16.337	14.153	13.162		16.917	~2.99 0	25.13	18.69	3.45E-09	-8.462
150	986.7		15.610	16.254	14.007	13.126	10.817	16.810	-3.056	24.94	20.76	2.68E-09	-8.573
155	1076.1	16.524	15.496	16,178	13.875	13.093	10.758	16.714	-3.114	24.76	22.85	2.13E-09	-8.672
160	1164.2	16.429	15.392	16,109	13.754	13.063	10.705	16.626	-3.168	24.60	25.00	1.73E-09	-8.763
170	1334.3	16.260	15.208	15.988	13,539	13,011	10.613	16.471	-3.264	24.29	29.44	1.19E-09	-8.923
180	1493.8	16,115	15.050	15.884	13.353	12.967	10.538	16.339	-3.346	24.01	34.13	8.71E-10	-9.060
190	1639.9	15,988	14.910	15.794	13.189	12,929	10.475	16,225	-3.420	23.75	39.04	6.62E-10	-9.179
200	1771.0		14.786	15.715	13.043	12.897	10.411	16,125	-3.487	23.51	44.13	5.20E-10	-9.284
210	1886.3	15.775	14.675	15.646	12.910	12.870	10.364	16.036	-3.548	23.29	49.28	4.20E-10	-9.377
220	1986.1	15.683	14.573	15.584	12.789	12.846	10.325	15.956	-3.606	23.07	54.42	3.46E-10	-9.461
230	2071.9		14.480	15.528	12.677	12.825	10.290	15.884					
240	2144.9		14.392	15.476	12.571				-3.660	22.87	59.41	2.90E-10	-9.537
						12.807	10.260	15.817	-3.711	22.67	64.21	2.47E-10	-9.607
250	2207.0	15.447	14.310	15.429	12.472	12.790	10,234	15.756	-3.761	22.47	68.72	2.13E-10	-9.673
260	2259.5	15,377	14.232	15.385	12.377	12.775	10.211	15.698	-3.808	22.28	72.96	1.85E-10	-9.734
270	2303.9	15,311	14.157	15.343	12.286	12.762	10.190	15.644	-3.854	22.10	76.86	1.62E-10	-9.792
280	2341.7		14.086	15.304	12.198	12.749	10.171	15.592	-3.898	21.92	80.50	1.42E-10	-9.847
290	2373.8	15.185	14.016	15.266	12.112	12.738	10.154	15.543	-3.942		83.81	1.26E-10	-9.900
300	2401.1	15.125	13.948	15.230	12.029	12.727	-			21.74			
310	2424.5	15.067	13.882	15.195	11.948	12.717	10.139	15.495	-3.984	21.57	86.91	1.12E-10	-9.951
320	2444.5	15.010					10.125	15.450	-4.026	21.40	89.74	1.00E-10	-10.000
			13.818	15.161	11.868	12.707	10.112	15.405	-4.067	21.23	92.40	8.96E-11	-10.048
330	2461.8	14.954	13.754	15.127	11.789	12.697	10.100	15.362	-4.106	21.07	94.84	8.05E-11	-10,094
340	2476.7	14.899	13,691	15.095	11.712	12.688	10.089	15.320	-4.146	20.91	97.16	7.26E-11	-10.139
350	2489.7	14.845	13,630	15.063	11,636	12.679	10.079	15.279	-4.184	20.75	99.32	6.56E-11	-10.183
360	2501.0	14.791	13.569	15.031	11.560	12 471	10 070	16 220	, 222	30 EC	101 20	E 03E 11	10 22
370	2510.8	14.738	13,509	15.000	11.485	12.671	10.070	15.239	-4.222	20.59	101.39	5.93E-11	-10.227
380	2519.4			-		12.662	10.061	15.200	-4.260	20.44	103.35	5.38E-11	-10.269
		14.686	13.449	14.970	11.411	12.654	10.053	15.162	~4.297	20.29	105.20	4.89E-11	-10.311
390	2527.0	14.634	13.390	14.940	11.338	12.646	10.045	15.124	-4.333	20.15	107.00	4.45E-11	-10.352
400	2533.7	14.583	13.332	14.910	11.265	12.638	10.038	15.087	-4.369	20.00	108.73	4.06E-11	-10,392

HE I GHT	TEMP K	LOG(N(N2) /M3)	LOG(N(O2) /M3)	LOG(N(O) /M3)	LOG(N(A) /M3)	LOG(N(HE) /M3)	LOG (N (H) /M3)	LOG(N /M3)	LOG (PRESSURE NT/M2)		DENSITY SCALE HT KM	DENSITY KG/M3	LOG (DEN KG/M3)
420	2544.9	14.481	13,216	14.851	11,121	12.623	10.024	15.014	-4.440	19.73	112.06	3.38E-11	-10.471
440	2553.7		13,101	14,793	10,979	12.608	10,012	14.044	-4.509	19.46	115.21	2.84E-11	-10.547
460	2560.8			14.736	10.838	12.593	10.002	14.875	-4.577	19.21	118,23	2.39E-11	-10.621
480	2566.6		12.877	14.680	10,698	12.579	9.994	14.808	-4.643	18.97	121.16	2.02E-11	-10.694
500	2571.3		12.766	14.624	10.560	12.564	9.987	14.742	-4.708	18.75	124.02	1.72E-11	-10.765
520	2575.1		12.656	14.569	10,423	12.550	9.982	14.678	-4.771	18.53	126.82	1.47E-11	-10.834
540	2578.3		12.547	14.514	10.287	12.536	9.975	14.615	-4.834	18.33		1.25E-11	-10,902
560	2581.0		12.439	14.460	10.153	12.523	9.969	14.553	-4.895	18.13	132.21	1.08E-11	-10,968
580 600	2583.3 2585.2		12.332	14.406	10.019 9.886	12.509	9.963	14.492	-4.955	17.95	134.83	9.26E-12	-11.033
800	2303.2	13,013	12,225	14.352	7.000	12.495	9.957	14.433	-5.015	17.78	137.41	8.00E-12	-11.097
620	2586.9		12,119	14.299	9.754	12.482	9.951	14.374	-5.073	17.62	139.95	6.92E-12	-11,160
640	2588.3		12.014	14,247	9.623	12.469	9.946	14.316	-5.131	17.46	142.43	6.01E-12	-11,221
660	2589.5		11,910	14.194	9.492	12.456	9.941	14.260	-5.187	17.32	144.83	5.23E-12	-11.282
680	2590.5		11.806	14.142	9.363	12.443	9.936	14.204	-5.243	17.18	147.21	4.56E-12	-11.341
700 720	2591.5		11,703	14.091	9,234	12.430	9.931	14.148	-5.298	17.05	149.55	3.98E-12	-11.400
740	2593.0		11,600 11,498	14.039 13.988	9.106 8.979	12.417	9.927	14.094	-5.352	16.92	151.83	3.49E-12	-11.457
760	2593.6		11.397	13.938	8.853	12.404 12.391	9.922 9.918	14.040 13.987	-5.406 -5.459	16.80 16.69	154.06 156.23	3.06E-12 2.69E-12	-11.514 -11.570
780	2594.2		11.297	13.887	8.727	12.379	9.914	13.935	-5.511	16.58	158.36	2.37E-12	-11.625
800	2594.6		11,197	13.837	8.602	12.366	9.910	13.883	-5.563	16.48	160.49	2.09E-12	-11.680
020		10 (05											
820 840	2595.1 2595.5		11.097	13.787	8.478 8.355	12.354	9,907	13.832	-5.614	16.37	162.52	1.85E-12	-11.734
860	2595.8		10.998 10.900	13.738 13.689	8.232	12.341 12.329	9.903	13.781 13.732	-5.664	16.28	164.50	1.63E-12 1.45E-12	-11.787
880	2596.1		10.802	13,640	8.110	12.317	9.900 9.896	13.682	-5.714 -5.763	16.18 16.08	166.46 168.38	1.28E-12	-11.839 -11.891
900	2596.4		10.705	13,591	7.989	12.304	9.893	13,634	-5.812	15.99	170.27	1.14E-12	-11.942
920	2596.7	12,197	10,608	13.543	7.868	12.292	9.889	13,585	-5.860	15.89	172.13	1.02E-12	-11.993
940	2596.9		10,512	13,495	7.748	12,280	9.886	13,538	-5.908	15.80	173.97	9.05E-13	-12.043
960	2597.1	12,029	10,417	13,447	7.629	12.268	9,883	13,491	-5.955	15.71	175.78	8.07E-13	-12,093
980	2597.3		10,321	13,399	7.510	12.256	9.879	13.444	-6.001	15.61	177.57	7.21E-13	-12.142
1000	2597.5	11.863	10,227	13,352	7.392	12.245	9.876	13.398	-6.047	15.51	179.35	6.44E-13	-12.191
1050	2597.9	11.658	9.993	13,235	7.100	12.215	9.868	13.286	-6.160	15.27	183.70	4.89E-13	-12,311
1100	2598.2	11.456	9.762	13,120	6.812	12.186	9.860	13.176	-6.269	15.00	188.05	3.74E-13	-12,427
1150	2598.4	11.257	9.534	13,006	6.527	12.158	9.853	13.071	-6.375	14.71	192.42	2.87E-13	-12.542
1200	2598.6		9.310	12.893	6.247	12.130	9.845	12,968	-6.477	14.40	196.85	2.22E-13	-12.653
1250	2598.8		9.088	12.783		12.102	9.838	12.870	-6.575	14.06	201.44	1.73E-13	-12,762
1300	2599.0		8.869	12,673		12.075	9,831	12,775	-6.670	13.69	206.24	1.35E-13	-12.869
1350	2599.1		8.653	12.565		12.048	9.824	12.684	-6.761	13,28	211.30	1.06E-13	-12,973
1400	2599.2		8.440	12.459		12.021	9.817	12.597	-6.848	12.85	216.67	8.43E-14	-13.074
1450 1500	2599.3 2599.3		8.230 8.022	12.353 12.249		11.995 11.969	9.811	12.514	-6.931	12.39	222.52	6.71E-14	-13.173
1300	207743	7.733	8.022	12.6247		11.909	9.804	12.435	-7.010	11.90	228.87	5.38E-14	-13.269
1600	2599.5		7.614	12.046		11.918	9.791	12.290	-7.155	10.88	243.43	3.52E-14	-13.454
1700	2599.6		7.217	11.847		11.868	9.778	12.161	-7.284	9.84	261.31	2.37E-14	-13.626
1800	2599.6		6.829	11,653		11.819	9.766	12.048	-7.397	8.84	283.33	1.64E-14	-13.786
1900	2599.7		6.451	11.464		11.772	9.754	11.949	-7.496	7.92	310.66	1.17E-14	-13.932
2000 2100	2599.7		6,081	11.279		11.726	9.742	11.862	-7.583	7.12	344.23	8.61E-15	-14.065
2200	2599.8 2599.8			11.099 10.923		11.681	9.731	11.786	-7.659	6.45	384.77	6.54E-15	-14.185
2300	2599.8			10,751		11.637 11.594	9•720 9•709	11.718 11.657	-7.727 -7.788	5.90 5.46	432.94 488.55	5.11E-15 4.11E-15	-14.291
2400	2599.9			10.583		11.552	9.109	11.601	-7.844	5.12	550.69	3.39E-15	-14.386 -14.469
2500	2599.9			10,419		11.511	9.688	11.550	-7.895		618.30	2.86E-15	-14.544
-		- - -		-									

EXOSPHER 1	C	TEMPERATURE	(K)

HEIGHT	500	550	600	650	700	800	900	1000	1100	1200
KM								,		
90	-5.465	-5.465	-5.465	-5.465	-5.465	-5-465	-5.465	-5.465	-5.465	-5.465
92	-5.620	-5.620	-5.620	-5,620	-5.620	-5.620	-5.620	-5.620	-5.620	-5.620
94	-5.776	-5.776	-5.776	-5.776	-5.776	5.776	+5.776	-5.776	-5.776	-5.776
96	-5.932	-5.932	-5.932	-5.932	-5.932	-5.933	-5.933	-5.933	-5.933	-5.933
98	-6.088	-6.088	-6.089	-6.089	-6.089	-6.089	-6.090	-6.090	-6.090	-6.090
100	-6.243	-6.244	-6.244	-6.245	-6.245	-6.246	-6.246	-6.247	-6.247	-6.247
102	-6.397	-6.397	-6.398	-6.398	-6.399	-6.400	-6.400	-6.401	-6.402	-6.402
104	-6.549	-6.550	-6.551	-6.552	-6.552	-6.554	-6.555	-6.556	-6.556	-6.557
106	-6.702	-6.703	-6.704	-6.705	-6.706	-6.707	-6.708	-6.710	-6.711	-6.712
108	-6.853	-6.854	-6.856	-6.857	-6.858	-6.860	-6.861	-6.862	-6.864	-6.865
110	-7.002	-7.004	-7.005	-7.006	~7. 007	-7.009	-7.011	-7.012	-7.014	-7.015
115	-7 •355	- 7.355	-7.356	-7.356	-7.356	-7.357	-7∙357	-7.358	~7.358	-7.359
120	-7.664	-7.661	-7.658	-7.656	-7.654	-7.651	-7.648	-7.646	- 7.645	-7.643
125	-7.935	-7,927	- 7.920	-7.915	~7 .910	-7.902	-7.895	-7.890	-7.885	-7.882
130	-8.175	-8.161	-8.150	-8.140	-8.132	8.118	-8.107	-8.098	-8,091	-8.085
135	-8.386	-8.366	-8. 350	-8,337	-8.325	-8.306	-8.291	-8.279	-8.269	-8.260
140	-8.573	-8.547	-8.527	-8.509	-8.495	-8.471	-8.452	-8.436	-8.424	-8.413
145	-8.742	-8.710	-8.685	-8.664	-8.645	-8.616	-8.594	-8.576	-8.561	-8.548
150	-8.898	-8,860	-8.829	-8.804	-8.782	-8.748	-8.722	-8.701	-8.684	-8.669
155	-9.044	-8,999	-8.963	-8,933	-8.908	-8.868	-8.838	-8.814	-8.795	-8.778
160	-9.182	-9.130	-9.089	-9.054	-9.026	-8.98n	-8.945	-8.918	-8.897	-8.878
170	-9.440	-9.375	-9.322	-9.278	-9.241	-9.183	-9.140	-9.106	-9.079	-9.056
180	-9.679	-9.601	-9.537	-9.484	-9.439	~9 •368	-9.314	-9.273	-9.240	-9.213
190	-9.902	-9.811	-9.737	-9.675	-9.622	-9.53R	-9.474	-9.425	-9.386	-9.354
200	-10.112	-10.010	-9.926	-9.855	-9.794	-9.697	-9.624	~9.566	-9.520	-9.483
210	-10.311	-10.198	-10.104	-10.025	-9.957	-9.848	-9.764	-9.699	-9.646	-9.604
220	-10.501	-10.377	-10.274	-10.187	-10.112	-9.991	-9.898	-9.824	-9.765	-9.717
230	-10.683	-10.549	-10.437	-10.342	-10.260	-10.128	-10.025	-9.944	-9.878	-9.824
240	-10.858	-10.714	-10.593	-10.491	-10.402	-10.259	-10.147	-10.058	-9.986	-9.927
250	-11.029	-10.873	-10.744	-10.634	-10.539	-10.385	-10.264	-10.168	-10.090	-10.025
260	-11.194	-11.028	-10.890	-10.773	-10.672	-10.507	-10.378	-10.274	-10.190	-10.120
270	-11.356	-11.179	-11.032	-10.907	-10.800	-10.624	-10.487	-10.377	-10.286	-10.211
280	-11.515	-11.327	-11.171	-11.039	-10.92 <u>5</u>	-10.739	-10.593	~10,476	-10.380	-10.300
290	-11.671	-11.472	-11.307	-11.167	-11.047	-10.85n	-10.697	-10.573	-10.471	-10.386
300	-11.825	-11.615	-11.440	-11.292	-11.166	-10.959	-10.797	-10.667	-10.559	-10.469
310	-11.976	-11.755	-11.571	-11.416	-11.282	-11.065	-10.895	-10.758	-10.645	-10.551
320	-12.125	-11.893	-11.700	-11.537	-11.397	-11.169	-10.991	-10.848	-10.729	-10.630
330	-12.273	-12.030	-11.828	-11.657	-11.510	-11.271	-11.085	-10.935	-10.812	-10.708
340	-12.417	-12.165	-11.953	-11.774	-11.621	-11.372	-11.178	-11.021	-10.892	-10.784
350	-12.559	-12.297	-12.077	-11.891	-11.731	-11.471	-11.268	-11.105	-10.971	-10.858
360	-12.699	-12.428	~12,200	-12.006	-11.839	-11.568	-11.358	-11.188	-11.049	-10.932
370	-12.835	-12.557	-12.321	-12.119	-11.946	-11.665	-11.446	-11.270	-11.125	-11.003
380	-12.967	-12.684	-12.441	-12.232	-12.052	-11.760	-11.532	-11.350	-11.200	-11.074
390	-13.095	-12.808	-12.558	-12.343	-12.157	-11-854	-11.618	-11.429	-11.274	-11.143
400	-13.218	-12.930	-12.674	-12.453	-12.261	-11.947	~11.703	-11.507	-11.347	-11.212

				-		EIGHTOILE TIL	•	•		
	500	550	600	650	700	800	900	1000	1100	1200
HEIGHT										
KM										
420	-13.446	-13,163	-12.900	-12,668	-12.464	-12.130	-11.870	-11.661	-11.489	-11.346
440	-13.646	-13.379	-13.116	-12.876	-12.663	-12,310	-12.033	-11.811	-11.629	-11.477
460	-13.815	-13.575	-13.320	-13.077	-12.857	-12.486	-12.194	-11.959	-11.766	-11.605
480	-13.953	-13.747	-13.508	-13.268	-13.044	-12.659	-12.351	-12.103	-11.900	-11.730
500	-14.066	-13.895	-13.678	-13,447	-13,223	-12.827	-12.506	-12.246	-12,032	-11.853
520	-14.158	-14.020	-13.829	-13,612	-13,392	-12.991	-12.658	-12.386	-12.161	-11.974
540	-14.236	-14.124	-13,960	-13.762	-13.551	-13.149	-12.807	-12.523	-12.289	-12.093
560	-14.302	-14,212	-14.072	-13.895	-13.698	-13,301	-12.952	-12.659	-12.415	-12,210
580	-14.361	-14.287	-14.168	-14.013	-13.831	-13.446	-13.093	-12.791	-12.538	-12.325
600	-14.415	-14.353	-14.251	-14.115	-13.950	-13.583	-13.229	-12.921	-12.660	-12.439
	• •									
620	-14.465	-14,412	-14.323	-14,203	-14.056	-13.711	-13.361	-13.048	-12.780	-12.551
640	-14.512	-14.466	-14.387	-14.281	-14.149	-13.828	-13.487	-13.172	-12.897	-12.662
660	-14.557	-14.517	-14.445	-14.349	-14.231	-13.936	-13.606	-13.291	-13.012	-12.770
680	-14.599	-14.564	-14.498	-14.411	-14.304	-14.034	-13.719	-13.407	-13.124	-12.877
700	-14.639	-14.610	-14.549	-14.467	-14.369	-14-122	-13.824	-13.518	-13.234	-12.982
720	-14.678	-14.653	-14.596	-14.519	-14.428	-14-201	-13.922	-13.624	-13.340	-13.085
740	-14.715	-14.695	-14.641	-14.568	-14.482	-14.272	-14.012	-13.724	-13.443	-13,185
760	-14.750	-14.735	-14.685	-14.615	-14.532	-14.337	-14.094	-13.819	-13.542	-13.283
780	-14.783	-14.773	-14.727	-14.659	-14.580	-14.395	-14.170	-13.908	-13.637	-13.378
600	-14.816	-14.811	-14.767	-14.702	-14.625	-14.449	-14.238	-13.991		
	-148010	-24,001			414.023	-140444	-140530	-136341	-13.727	-13,470
820	-14.847	-14.846	-14.807	-14.743	-14.668	-14.499	-14.301	-14.068	-13.813	-13.560
840	-14.876	-14.881	-14.845	-14.783	-14.710	-14.545	-14.358	-14,139	-13.895	-13.645
860	-14.905	-14.914	-14.881	-14,823	-14.750	-14.589	-14.411	-14.205	-13,971	-13.728
880	-14.932	-14.946	-14.917	-14.861	-14.789	-14.631	-14.460	-14.265	-14.043	-13.806
900	-14.958	-14.976	-14,952	-14.898	-14.828	-14.671	-14.506	-14.321	-14,110	-13.881
920	-14.984	-15.006	-14.985	-14.934	-14.865	-14.710	-14.549	-14.373	-14.172	-13.952
940	-15.008	-15.034	-15.017	-14.969	-14,901	-14.748	-14.589	-14,421	-14,231	-14.019
960	-15.031	-15.062	-15.049	-15,003	-14.937	-14.784	-14.628	-14.466	-14,285	-14.082
980	-15.054	-15.088	-15.079	-15.036	-14.972	-14.820	-14.665	-14.508	-14.335	-14.142
1000	-15.076	-15,113	-15,108	-15.068	-15.006	-14.855	-14.701	-14.547	-14.382	-14.197
					-13,000	-146033	-140101	W. 1854.	-14,502	-146171
1050	-15.128	-15.173	-15.177	-15.145	-15.088	-14.940	-14.786	-14.638	-14.487	-14.322
1100	-15.177	-15.228	-15.241	-15.217	-15.165	-15.021	-14.867	-14.721	-14.578	-14.428
1150	-15.222	-15.278	-15.299	-15,283	-15.238	-15.099	-14.944	-14.797	-14.659	-14.520
1200	-15.266	-15.325	-15.352	-15,345	-15.306	-15.173	-15.018	-14.870	-14.733	-14.601
1250	-15.307	-15.369	-15.402	-15.402	-15.370	-15.245	-15.090	-14.940	-14.803	-14.674
1300	-15.347	-15.410	-15.448	-15,455	-15.430	-15.313	-15.160	-15.008	-14.869	-14.741
1350	-15.385	-15.450	-15.491	-15,504	-15.486	-15.379	-15.227	-15.073	-14.932	-14.805
1400	-15.422	-15.487	-15.531	-15.549	-15.538	-15.441	-15.292	-15.137	-14.994	-14.865
1450	-15.459	-15.523	-15.569	-15.592	-15.587	-15.500	-15.355	-15.199	-15.054	-14.923
1500	-15.494	-15.558	-15.605	-15.632	-15.632			-15.260		
1,000	-120424	-124220	-17,007	-134032	-13.032	-15.556	-15.416	+13.200	-15.112	-14.979
1600	-15.563	-15.624	-15.673	-15.705	-15.715	-15.660	-15.531	-15.376	-15.225	-15.087
1700	-15.630	-15.686	-15.735	-15.771	-15.787	-15.752	-15.638	-15.487	-15.332	-15.190
1800	-15.694	-15.746	-15.793	-15.830	-15.852	-15.835	-15.736	-15.590	-15.435	-15.289
1900	-15.756	-15.804	-15.849	-15,886	-15.911	-15.908	-15.825	-15.688	-15.534	-15.384
2000	-15.817	-15.860	-15.902	-15,938	-15.966	-15.974	-15.907	-15.780	-15.627	-15.476
2100	-15.876	-15.915	-15.953	-15.988	-16.016	-16.034	-15.981	-15.865	-15.716	-15.564
2200	-15.934	-15.967	-16.002	-16.035	-16.063	-16.088	-16.049	-15.944	-15.801	-15.648
2300	-15.991	-16.019	-16.050	-16.081	-16.108	-16.138	-16.110	-16.017	-15.881	-15.729
2400	-16.046	-16.069	-16.097	-16.125	-16.151	-16.183	-16.166	-16.085	-15.956	-15.807
2500	-16.100	-16.118	-16.142	-16,167	-16.192	-16.226	-16.217	-16.148	-16.027	-15.881
200	-104100			-1-4-01	-10.172	-10+EC	-104511	-10.140	-1000T	4139001

Š

EXOSPHERIC TEMPERATURE (K)

							-			
	1200	1300	1400	1500	1600	1800	2000	2200	2400	2600
HEIGHT										
. KM										*.
90	-5.465	-5.465	-5.465	-5,465	-5.465	~5.465	-5.465	-5,465	-5.465	-5.465
92	-5.620	~5.620	-5.620	-5,620	-5,620	-5.620	-5.620	-5.620	-5.620	-5.620
94	-5.776	-5.776	-5.776	-5,776	-5.776	m5.776	-5.776	-5.776	-5.776	-5.777
96	~5.933	-5.933	-5.933	-5.933	-5.933	-5.934	-5.934	-5.934	-5.934	-5.934
98	-6.090	-6.091	-6.091	-6.091	-6.091	-6.091	-6.092	-6.092	-6.092	-6.092
100	-6.247	-6.248	-6.248	-6.248	-6.248	-6.249	-6.249	-6.250	-6.250	-6.250
102	-6.402	-6.403	-6.403	-6.403	-6.404	-6.404	-6.405	-6.406	-6.406	-6.406
104	-6.557	-6.558	-6.558	-6,559	-6.559	-6.560	-6.561	-6.562	-6.562	-6.563
106	-6.712	-6.712	-6.713	-6.714	-6.714	-6.716	-6.717	-6.717	-6.718	-6.719
108	-6.865	-6.866	-6.867	-6.867	-6.868	-6.869	-6.871	-6.872	-6.873	-6.873
110	-7.015	-7.016	-7.017	-7.017	-7.018	-7.020	~7 •021	-7.022	-7.023	-7.024
115	-7.359	-7.359	-7.360	-7.360	-7.360	-7.361	-7.362	-7.362	-7.363	-7.363
120	-7.643	-7.642	-7.641	-7.640	-7.640	-7.63R	-7.637	-7.636	-7.635	-7.635
125	-7.882	-7.878	-7.875	-7.873	-7.871	-7.867	-7.863	-7.861	-7.858	-7.856
130	-8.085	-8.079	-8.074	-8.070	-8.066	-8.060	-8.054	-8.049	-8.045	-8.042
135	-8.260	-8.252	-8.246	-8,240	-8.235	-8.225	-8.218	-8.211	-8.206	-8.201
140	-8.413	-8.404	-8.395	-8.388	-8.381	-8.370	-8.361	-8.353	-8.346	-8.340
145	-8.548	-8.537	-8.528	-8.519	-8.511	-8.498	-8.487	-8.478	-8.470	-8.462
150	-8.669	-8,657	-8.646	-8.636	-8.628	-8.613	-8.601	-8.590	-8.581	-8.573
155	-8.778	-8.765	-8.753	-8.742	-8.732	-8.716	-8.703	-8.691	-8.681	-8.672
		·		-		2.50	-54102	-0.07.		-01012
160	-8.878	-8.863	-8.850	-8.838	-8.828	-8.810	-8.796	-8.783	-8.773	-8.763
170	-9.056	-9.038	-9.022	-9,008	-8.996	-8.97 6	~8.959	-8.946	-8.934	-8.923
180	-9.213	-9.190	-9.172	-9.156	-9.142	-9.118	~9.100	-9. 084	-9.071	-9.060
190	-9.354	-9.327	-9.305	-9.286	-9.270	-9.243	-9.222	-9.205	-9.191	-9.179
200	-9.483	-9.452	-9.426	-9.405	-9.386	~9.355	-9.331	-9.312	-9.297	- 9•284
210	-9.604	-9.568	-9.538	-9.513	-9.492	-9.457	-9.430	-9.408	-9.391	-9.377
220	-9.717	-9.677	-9.643	-9.615	-9.590	-9.550	-9. 520	-9.496	-9.476	-9.461
230	-9.824	-9.779	-9.742	-9.710	-9.682	-9. 638	-9.603	-9.576	-9.555	-9.537
240	-9.927	-9.877	-9.835	-9.800	-9.769	+9.719	-9.681	~9.65 l	-9.627	-9.607
250	-10.025	-9.971	-9.925	-9.886	-9.852	-9. 797	-9.755	-9.721	-9.694	-9.673
260	-10.120	-10.061	-10.011	-9.968	-9.931	-9.871	-9.824	-9.788	-9.758	-9.734
270	-10.211	-10.148	-10.094	-10.048	-10.008	-9-942	-9.891	-9.851	-9.818	-9.792
280	-10.300	-10.232	-10.174	-10,125	-10.081	-10.011	-9.955	-9.911	-9.876	-9.847
290	-10.386	-10.314	-10.252	-10.199	-10.153	-10.077	-10.017	-9.970	-9.931	-9.900
300	-10.469	-10.393	-10.328	-10.271	-10.222	-10.141	-10.077	-10.026	-9.985	-9.951
310	-10.551	-10.470	-10.401	-10.342	-10.290	-10.204	-10.136	-10.081	-10.037	-10.000
320	-10.630	-10.546	-10.473	-10.411	-10.356	-10.264	-10.192	-10.134	-10.087	-10.048
330	-10.708	-10.620	-10.544	-10.478	-10.420	-10.324	-10.248	-10.186	-10.136	-10.094
340	-10.784	-10.692	-10.612	-10.543	-10.483	-10.382	-10.302	-10.237	-10.184	-10.139
350	-10.858	-10.762	-10.680	-10,608	-10.544	-10.439	-10.355	-10.286	-10.230	-10.183
360	-10.932	-10.832	-10.746	-10.671	-10.605	-10.495	-10.407	-10.335	-10.276	-10.227
370	-11.003	-10.900	-10.810	-10,733	-10.664	-10.549	-10.458	-10.383	-10.321	-10.269
380	-11.074	-10.967	-10.874	-10.793	-10.722	-10.603	-10.508	-10,430	-10.365	-10,311
390	-11.143	-11.032	-10.937	-10.853	-10.779	-10.656	-10.557	-10.476	-10.408	-10.352
400	-11.212	-11.097	-10.998	-10.912	-10.836	-10.708	-10.605	-10.521	-10.451	-10.392

H

•	2600		-10-471	50		ď	ŏ	ā	ŏ		i	11.1	-11.221	11.2		11.4	* · · ·	:		9	0	=	Ξ	=	Ξ:	Ξ;			::	-12.191	:	21	75.21	10.01	2 4 7	12.86	12.97	13,07	13,17	13.26	3.45	13.62	13.78	13.93	14.06	14.18	14.29	-14,386	14.46	14.54	
	2400		-10.534	10.01	10.77	0.84	10.91	10,99	11.06	11,12	11,19	1,26	Ξ	11.39	11.45	11.51	11.57	11.65	40.	C) • 11	19•11	٠.	6.1	6.1	0,0	٠ •	• •	, ,		12,357	:	-12.485	9.7	•	9 0		3.1	3.2	3.3	3.4	3.6	3.8	4	,	4.2	4	4	-14.554	4.6	4.6	
	2200		2	2 9	30		Ξ	Ξ	Ξ	Ξ.	Ξ.	1.38	-11.452	1,52	1.58	1.65	7	1.78	1 . B4	3.5	1.97	2.03	5,09	2.15	2,21	2,26	7.02	200	0 7	.12.553		-12,689	2,82		•		3	3.54	3.64	3.74	13.93	14.09	14.23	14.36	14.46	14.55	14-63	-14.709	14.77	14.83	
	2000		-10.700	-10.792	100.01	-11.053	-11.136	-11.217	-11.296	-11.375	-11.451	11.52	-11.601	11.67	11.74	11,81	11.88	11,95	12.02	12,09	12,15	12.2	12.2	12.3	12.4	12.4	12.5	9.0		-12,785		12.	13.07	13.21		1304	13.70	13.81	13,92	14.01	4 - 1		4	4	4.6	7	,	-14.860	6.4	6 4	
TEMPERATURE (K)	1600		0.	0.0) (11.180	11.2	11.3	11.4	11.5	11.6	07.11	-11.780	11.85	11,93	12,01	12.09	12.16	12,23	12,31	12,38	12.45	12.52	12.59	12.66	12.73	12.80	12,86	64.0	13.066	13.00	.00	e.	m .	'n,	5 0	1	3	3	4	4.47	7 2 7	44	7 7	8 4	8 4	9 0	15,021	5.08	5.1	
EXOSPHERIC TEM	1600		ď	<u>.</u>		11.257	: -	-	_	_:	_	0	-12,002	2.0	2.1	2.2	2,3	2.4	2.5	2,5	2.6	7.	2 8	2.8	2.9	3.0				*13°33'C	υ •	3.56	3.71	3.85	6	•	9 6	38	46	52	14.46		1.0.7	14.00	00.41		70.01	, 10	15.27	15.34	•
EX	1500		11,02	11,13	11.664	11.457	11.55	11.65	11.75	11,85	11,94	12.04	-12,135	12,22	12,31	12,40	12,49	12,58	12,66	12,75	12,83	2.91	2.99	3.07	3,15	3,23	3,30	9		130,501		13,75	13,89	14,03	12	7. AF	14.4	14.51	14.57	14.	74.74	76 7	0	, c	200	֡֝֜֝֜֜֜֝֜֝֓֜֜֝֓֓֓֜֜֜֓֓֓֓֓֜֜֜֓֓֓֓֓֓֓֓֜֓֜֓֓֡֓֡֓֡֓֡	7	1 U1	5,39	-15,459	
	1400		1.1	1.2		12401	•		. 8	1.9	2.0	10 18	-12.286	12,38	12,47	12,57	12.66	12,75	12.84	12,93	13,02	12	13.1	3.2	13,3	13.4	13,5	13.55	9	13.724	13.	3.9	•	4.2	ď.	•	* 4	•	9	-14.748	74. 85		14.0		15.20	10.00	15.27	15.4	15.51	-15.589	
	1300		11,2	11.3	11.4				12.0	12.1	2.2	12 25	-12.460	12.56	12.66	12,76	12,86	12,95	13,05	13,14	13.2		3	13.4	13.5	13.6	13.7	13.7	8	13934	13.9	14.14	14,26	14,37	14.46	14.54	10.41	76 71	14.80	-14.859	70 71	26.01	00.01	CT • CT	10001	0000	77.67	15.58	15.65	-15,731	
	1200		11,34	11.47	11.60	11,73	11.607	12.09	12.21	12.32	-12,439		12.642	12.77	12.87	12.98	13.08	13,18	13,28	13,37	13,47	,	34.61	13.72	13.80	13.88	13,95	14.01	14.08	-14.142	14,19	14.32	14.42	14.52	14.60	14.67	14.74	70 71	14.00	-14.979	1	2000	15.19	15.48	10.08	12047	15.56	15.04	15.80	15.881	
	HEIGHT	χ Σ	420	440	094	084	200	0.44	2 4	9 60	900	,	044	9 6	680	100	720	740	160	780	800	0	070	860	880	006	920	076	096	086	1000	05	10	15	20	25	2	9 <	1 4	1500		0001	0021	0081	0061	2000	2100	2000	2400	2500)))

The wide a same definition of the same of